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The behavior of itinerant fermions at T = 0 at the verge of an instability into a state
with either spin or charge order is a fascinating subject which continue to attract a lot of
attention from theorists with background in both condensed matter and high energy. At
a quantum-critical point (QCP), a scattering by massless bosonic fluctuations of the order
parameter destroys fermionic coherence in dimensions D ≤ 3, at least in some parts of
the Fermi surface (FS), leading to a non-Fermi liquid (NFL) behavior. The description of
such a state cannot be reached within a conventional perturbation theory in fermion-fermion
interaction and requites non-perturbative methods.

The paper by Schlief, Lunts, and Lee (SLL) presents qualitatively new understanding
of antiferromagnetic quantum criticality within the spin-fermion model [1]. The model de-
scribes itinerant fermions with the Fermi surface like in high-Tc cuprates (Fig. 1), near
a T = 0 quantum transition into a metallic antiferromagnetic state with commensurate
momentum Q = (π, π). It assumes that near a QCP, the dominant interaction between
low-energy fermions is the exchange of massless collective bosonic excitations in the spin
channel.

The spin-fermion model can be viewed as the low-energy effective theory for interacting
fermions, after one integrates out high-energy fermions At its upper cutoff, which is a fraction
of the fermionic bandwidth, fermions and their collective spin fluctuations are assumed
to behave, respectively, as free quasiparticles, and as propagating paramagnons (bosonic
χ(q,Ωm) ∝ 1/(ξ−2 + q̃2 + Ω2

m/c
2), where q̃ = q − Q and Ωm is Matsubara frequency). It

has been known from the work by Hertz back in 1976 (Ref. [2]) that a direct perturbation
theory in spin-fermion coupling g fails because low-energy fermions give rise to a linear in
Ωm term in the bosonic propagator (the Landau damping). This term overshadows the bare
Ω2 contribution and changes the dynamics of critical bosons.

Several groups, who analysed the spin-fermion model before SLL, argued [1, 3] that the
right way to proceed is to solve self-consistently for the Landau damping and the fermionic
self-energy. The self-consistent equations can be solved exactly if one formally extends the
model to N fermionic flavors and takes the limit N →∞. The solution yields, at the QCP,
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Figure 1: A Fermi surface with fourfold rotational symmetry. The (red) dots represent the
hot spots connected by the AFM wave vector.

the bosonic propagator with the dynamical exponent zb = 2: χ(q,Ωm) ∝ 1/(q̃2 + γ|Ωm|),
where γ ∝ g2, and fermionic self-energy Σ(ωm, k‖), which depends on Matsubara frequency
ωm, and the deviation from a hot spot along the Fermi surface, k‖, but not on the momentum
component transverse to the Fermi surface. At a hot spot kh (a FS point for which kh + Q

is also on a FS), the self-energy has a NFL form Σ(ωm, 0) ∝ Ω
1/2
m (Ref. [4]). For other kF ,

FL behavior survives, but the quasiparticle residue and the inverse effective mass scale as
k‖. This in turn yields the specific heat C(T ) ∼ T log T .

This was initially viewed as a legitimate theory at a QCP (modulo the remark at the end
of this commentary). However, the attempts to extend the theory from N =∞ to a finite N
(and eventually to the physical case of N = 1) ran into problems: already at the leading order
in 1/N the corrections turn out to depend logarithmically on the energy at which the system
is probed [1, 3]. The logarithms appear in three places: in the renormalization of the spin-
fermion coupling g, which grows as the system moves to a lower energy, in the renormalization
of the Fermi velocity vkF , which evolves such that the FS gets progressively more nested at
a hot spot (δ = |(vkF + vkF+Q)/(vkF − vkF+Q)| decreases), and in the renormalization of
the q̃2 term in the bosonic propagator. The last effect is the most crucial one because, as
Metlitski and Sachdev explicitly demonstrated [3], it gives rise to the logarithmical flow of
the dynamical exponent zb towards a smaller value.

SLL used these earlier results as an input. They conjectured that at the lowest energies
δ becomes small and the corrections to the q̃2 term exceed the bare term. Because both the
Landau damping term and the corrections to q̃2 term come from low-energy fermions, they
argued that the full bosonic susceptibility has to be obtained self-consistently within the low-
energy model. They argued that at small δ, the self-consistent equation for χ(q,Ωm) can be
obtained by restricting to the disgrams with just one internal bosonic line. The outcome of
self-consistent analysis is that the momentum dependence of the bosonic propagator becomes
|q̃x| + |q̃y| (modulo logarithms) instead of q̃2, i.e., at the lowest Ωm and q̃, the dynamical
exponent becomes zb = 1. This is a very substantial deviation from the original zb = 2.
As the consequence of the change of zb, the fermionic self-energy becomes less singular at a
QCP, and even at a hot spot it has a form similar (but not equivalent) to that in a marginal
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FL (Ref. [5]). SLL analysed the structure of corrections to their one-loop self-consistent
theory and argued that they remain finite down to zero energy, i.e., zb = 1 theory is stable
with respect to perturbations.

In my view, this result is a truly remarkable achievement in the theory of quantum-critical
phenomenon. Still, a fundamental question, which is not yet resolved, is whether SLL zb = 1
theory is the end point of the flow that has been detected within zb = 2 theory. SLL argued
that it is and have shown in a subsequent paper [6] that they can follow the crossover by
working near D = 3 instead of D = 2. However, (i) the logarithmical flow of zb from zb = 2
to zb < 2 is specific to D = 2 and is not present at D > 2 if one keeps ordinary Landau
damping |Ω| term in bosonic propagator (one can get the flow if one modifies the power of
Ω), and (ii) at the beginning of the flow the spin-fermion coupling g increases, while in SLL
zb = 1 theory it is small, of order δ, How (and if) the two limiting forms of g are connected
needs to be understood.

There are also two practical issues. First, if one starts with the theory with a bare δ of
order one, logarithmical corrections to zb = 2 scaling develop rather slowly [7], i.e. the zb = 1
behavior emerges at truly low energies. So far, quantum-Monte-Carlo (QMC) studies of the
spin-fermion model only found zb = 2 behavior at all values of δ which they analyzed [8] (the
QMC analysis has been done for an anisotropic model with only XY spin components, which
in principle is different from SU(2) symmetric case). From this perspective, the best way to
detect the zb = 1 behavior predicted by SLL is to start with small bare δ. However, if δ is too
small, there is another potential problem: a near-nesting of hot fermions gives rise to 1D-type
physics [9], which can potentially mask zb = 1 behavior, particularly in QMC studies on a
finite set of Matsubara points. Another potential issue is spin-fluctuation-induced d-wave
superconductivity. In zb = 2 theory with bare δ = O(1), superconductivity emerges at an
energy/temperature of order of spin-fermion coupling g (Ref.[10]). This scale is generally
larger than the one at which zb = 1 behavior emerges. The situation again gets better when
a bare δ is small. SLL argued that in this limit superconductivity emerges at an energy,
which is parametrically smaller than the upper edge of zb = 1 behavior. Hopefully, advanced
QMC and other numerical studies will resolve all these issues, and detect zb = 1 behavior,
predicted by SLL.

One last comment. The work by SLL is devoted to an antiferromagnetic QCP, when
the order parameter carries the momentum Q = (π, π). There is another set of QCP’s,
for which the order emerges with momentum Q = 0, due to Pomeranchuk-type instability.
Examples of Q = 0 QCP include ferromagnetism, a nematic order that breaks lattice ro-
tational symmetry, and several theories of fermions minimally coupled to U(1) gauge field,
like Halperin-Lee-Read composite fermion state at a half-filled Landau level [11]. For these
systems, N = ∞ theory at a QCP describes fermions with non-Fermi liquid self-energy
Σ(ω) ∝ ω2/3 and bosons with zb = 3 (χ(q,Ω) ∝ 1/(q2 − iγΩ/q)) (Ref.[12]). For this QCP,
S-S Lee found [13] that, at three loop level, forward scattering gives rise to O(1) correc-
tions to Σ even at N = ∞, and subsequent works have found [14] singular corrections to
the fermionic dispersion and the bosonic propagator. For an antiferromagnetic QCP, the
corrections of this type do emerge once one considers a composite scattering by two (π, π)
spin fluctuations. How this composite scattering affects the crossover from zb = 2 to zb = 1
is another issue for future study.
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