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The frustration that stems from Gauss’ Theorema Egregium is familiar to anybody who
attempted to draw a map of earth or to neatly cover a ball with a wrapping paper. This
fundamental theorem asserts that it is impossible to deliver isometrically (i.e. with no in-
plane strain) a two-dimensional solid with “target” Gaussian curvature, Gtar (defined by
its intrinsic metric), to the surface of a “substrate” with Gaussian curvature, Gsub 6=Gtar.
Figure 1 illustrates the implication of this “geometric incompatibility” for thin solid objects,
whose thickness, t, is much smaller than their diameter, D: (a) Top view of a solid sheet
“stamped” in a narrow gap, δ, between two rigid spheres of radius R [1] (here, Gtar=0, Gsub=
R−2); (b-d) Top views of polygonal and circular patches cut from a spherical shell with
radius of curvature R, floating on a flat liquid surface [2] (here, Gtar=R

−2, Gsub=0); (e) Top
view of a cone confined by rigid plates (Gtar(x)=α·δ2d(x), Gsub=0, α is the cone’s angle).

The origin of wrinkle patterns in the above examples can be understood by recalling
the thickness-dependent ratio, B/Y ∼ t2, between the bending modulus (B) and stretching
modulus (Y ) of a thin Hookean solid object, and considering the respective energies (per
area), associated with the corresponding deformation of the solid, as well as the penalty due
to deflections from the (incompatible) confining topography:

ustrain ∼ Y · (strain)2 ; ubend ∼ B · (curvature)2 ; usub ∼ K · (deflection)2 . (1)

Figure 1: (a) spherical stamping of a solid sheet [1]. (b-c) experiment and (d) simulation of various
patches of a spherical shell floating on a liquid surface [2]. (e) cone stamped between flat plates
(courtesy of E. Sharon).
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Here, K is a “substrate stiffness” parameter, e.g. in Fig. 1b, K = ρliqg, due to gravity
that acts on the liquid foundation. In stamping problems, the energy usub is replaced by a
non-holonomic constraint (i.e. deflection in Figs. 1a,1e is limited by the gap δ).

If the confinement is sufficiently strong (i.e. K→∞ in Figs. 1b-d ; δ→t in Fig. 1a,1e),
the solid object conforms perfectly to the substrate and is highly strained. However, if the
confinement is imposed more softly, compression may be relieved by deflections from the
substrate, thereby “trading” an energetically-expensive strain with energetically-cheap cur-
vature. This mechanism underlies the formation of wrinkles with characteristic wavelength,
λ∼δ, in stamping problems (Fig. 1a,1e), or λ∼(B

K
)1/4 (Fig. 1b-d), reflecting a balance between

ubend, which favors small curvature (hence large λ), and usub, which favors small deflections
(hence small λ). In uniaxial compression of a solid sheet, where there is no geometric in-
compatibility, uniformly-spaced, parallel wrinkles suppress the “bare” strain, εbare (reached

at K→∞) down to a “residual” value, εres∼
√
BK
Y

[4]. In a geometrically-incompatible con-
finement (Fig. 1), the wrinkle patterns are often far more complex, and became a focus of
attention in the “extreme mechanics” community. Since the energetic price tag for strain
is very large, a natural conjecture is that minimization of the residual strain, εres, selects
among various wrinkle states that accommodate the geometric confinement. A central object
of study is thus the ratio εres

εbare
(where εbare∼|Gtar − Gsub| ·D2). Does this ratio approach a

finite value as the confined solid is made infinitely thin? Alternatively, are there “asymptot-
ically isometric” deformations [3] for which this ratio vanishes in that limit?

In a recent study [2], Aharoni et al. laid out an innovative approach to geometrically-
incompatible confinement. In their experiments and simulations, the authors cut patches of
various shapes from a thin spherical shell, which were then placed on the flat surface of a
strongly adhesive liquid (Fig. 1b-d). A prominent motif (see Figs. 1b-c) is the emergence
of wrinkle domains , in which the pattern appears to relieve a uniaxial compression through
parallel, uniformly spaced, elongated wrinkles. Drawing an analogy to liquid crystals with
a smectic order, whereby molecules form a layered structure [5], the authors proposed to
describe domain properties through an effective 2D smectic energy. In this coarse-grained
description, the smectic “compression” and “bending” modulii reflect the energetic penalties
associated with deviations of the average wrinkle wavelength from the energetically-favorable
value, λ=(B

K
)1/4, and deviation of the average wrinkle direction from the compression direc-

tion. These effective smectic modulii should not be confused with Y and B in the original
energy (Eq. 1); instead, they are determined through nontrivial combinations of all physical
parameters: the “bare” elastic modulli, Y,B, the stiffness K, and the bare strain, εbare=(D

R
)2.

Armed with their coarse-grained theory, the authors pushed forward to obtain a number of
powerful results. Employing the vast literature on domain walls (grain boundaries) in liquid
crystals, they provided nontrivial, quantitative predictions for the width and shape of the
transition zones between wrinkle domains, in terms of the control parameters, Y,B,K, and
εbare. Another notable result pertains to long wavelength undulations (Fig. 2d), predicted
through analogy to a well-known, boundary-induced instability in smectic phases. Finally,
“polygonizing” a spherical shell into locally-planar domains of size Ldom contributes to the

residual strain, which can be estimated as: εres∼(Ldom

R
)2+

√
BK
Y

(the second, “mechanical”
term, exists even in uniaxial compression [4]). Balancing the domain-bulk energy, Y ·εres2,
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with the domain-boundary energy (which favors Ldom→D), a novel scaling rule is obtained
for the domain size: Ldom

D
∼(R·t

D2 )1/5. Notably, for sufficiently thin shells ( t
D
�1), the ratio εres

εbare
,

and the number of domains, Ndom∼( D
Ldom

)2, are determined by the ratio, D√
R·t , between the

solid’s diameter and the geometric mean of the largest and smallest scales (R, t, respectively),
recognized as a “geometric bendability” parameter [3]. The independence on the strength
with which confinement is imposed (i.e. K), suggests that these scalings characterize also a
stamping version of this problem (a spherical shell confined between planar plates).

Putting together these results, Ref. [2] offers an appealing, multi-scale plan of attack.
At scales smaller than the wrinkle wavelength λ, the mechanics is reminiscent of a planar
sheet under uniaxial compression; at intermediate scales (between λ and Ldom), the solid
responds as a 2D smectic matter; at scales larger than the domain size, the mechanics is
finally described by elastic solid theory (Eq. 1), albeit with renormalized modulii. In order to
assess to value of this approach for analyzing morphologies of geometrically-confined solids,
it is crucial to address a few potential difficulties.

• For a given, axially-symmetric confinement problem, characterized by the shell’s radius
of curvature (R) and diameter (D), the analysis of [2] shows that for sufficiently thin shells
( t
D
.D

R
), a wrinkle domain pattern is preferable to a planar, unwrinkled deformation, and

becomes asymptotically isometric (i.e. εres
εbare
→0) as D√

R·t→∞. However, it is not clear whether

(or why) the axial symmetry is spontaneously broken. Indeed, wrinkle domains are evident
in Figs. 1b,1c, in which the confined patch is polygonal, but for a circular patch (Fig. 1d)
the pattern appears similar to the axially-symmetric, ring-like wrinkles of a confined cone
(Fig. 1e). The presence (or lack thereof) of spontaneous symmetry breaking may be informed
by comparing εres

(domains) found in [2] (above), to an analogous estimate of εres
(rings), obtained

by minimizing energy over axially-symmetric, ring-like deformations.

• The multi-scale nature of wrinkle patterns, where characteristic scales of wrinkles, grain
boundaries, and domains, span the interval t↔ D, makes a numerical study of the limit
D√
R·t→∞ a daunting task. One may thus hope that experiments with ultrathin polymer

sheets, for which this ratio may be tuned to a few thousands or more, will overcome boundary
effects and reveal the “true” ground state. However, in such conditions the surface tension,
γlv, which pulls on the solid’s edge, often has a non-negligible effect. Contrary to a claim
made in [2] (Supplementary information), the importance of surface tension is not related
to the tensile strain, γlv

Y
, which may be tiny, but rather to the ratio γlv√

BK
(or more generally:

γlv
Y
·εres−1), which is recognized as a “softness” parameter [4]. It is the small value of this

parameter in the experiments of [2], rather than small γlv
Y

, that underlies their observation
of negligible surface tension effect. For stiff polymers (e.g. poysterene) with sub-micron
thickness, the softness ratio may be extremely large (while γlv

Y
remains small), suggesting

that experimenters may find a strikingly different morphology than the one reported in [2].

Finally, let’s assume that rigorous energetic bounds, or careful simulations, find that the
ground state, for sufficiently thin shells and away from any axial-symmetry-breaking bound-
aries, is not wrinkle domains, but a far simpler axisymmetric state, similarly to Fig. 1e.
Will such a possible result revoke the merit of an effective smectic theory?

Quite the contrary!
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To start with, the remarkable agreement between simulations and effective smectic pre-
dictions for the width and structure of domain walls [2], unequivocally demonstrates the
predictive power of this approach for situations where wrinkle domains are guaranteed to
exist (e.g. near flat boundaries). From this perspective, even though the bulk state may not
consist of wrinkle domains, the effective smectic theory [2] is a valuable tool for studying
meso-scale morphological features in the vicinity of boundaries. One must not forget that in
such a scenario the morphological signatures at larger scales, most importantly the domain
size, Ldom, may not be properly described by the prediction of [2] (above). Instead, the size
of wrinkle domains is likely to be determined by the shape of the boundary (e.g. Fig. 1c).

Next, one may ask whether an extension of the effective-smectic approach may be applied
for a coarse-grained description of patterns different from wrinkle domains. To wit, let us
note that underlying the effective smectic theory is the assumption of a “domain director”,
n̂(x) ≈ n̂0 (x in a given domain) that characterizes the compression direction in each domain.
Deviations from n̂0 underlie the smectic energies (of bending and compression) [2]. However,
inspection of Figs. 1a,1e, reveals a compression direction that varies continuously, with bend
(n̂×∇×n̂6=0, Fig. 1a) or splay (∇·n̂6=0, Fig. 1e). A coarse graining approach, which penalizes
deviations from such director fields, is likely to include effective nematic energies.

Another complexity, pertains to the assumption of a “slaving” condition, which invokes
that the ratio, A

λ
, between the wrinkle amplitude, A(x), and its wavelength, λ, is com-

pletely determined by the confining geometry [2]. This echoes standard tension-field-theory,
in which the stress field underlying wrinkles is assumed to be “pre-determined” by the con-
fining geometry and an external tensile load, through minimization of a “dominant” energy
that approaches a constant value (namely, εres

εbare
→Cst) as D√

R·t→∞ [1, 3]. However, recent

studies [6] indicate that under pure geometrically-incompatible confinement, such a slaving
condition may no longer be valid, implying that a coarse-grained energy functional should
include an explicit term that couples the amplitude, A(x), and the director, n̂(x).

Those who will follow the path marked by Aharoni et al. [2] may thus discover a virgin
territory in which new, yet unknown versions of liquid crystal theory become effective coarse-
grained models for deformations of thin solids in geometrically-incompatible confinement.
From this perspective alone, this paper is an asset to those who strive to see universality in
the complex morphology exhibited by a candy wrapper or an inflated mylar balloon.

References

[1] J. Hure, B. Roman and J. Bico, Phys. Rev. Lett. 109, 054302 (2012).

[2] H. Aharoni et al., Nat. Comm. 8, 15809 (2017).

[3] E. Hohlfeld and B. Davidovitch, Phys. Rev. E. 91, 012407 (2015).

[4] J. Huang et al. , Phys. Rev. Lett. 105, 038302 (2010).

[5] P.G. De Gennes and J. Prost, The Physics of Liquid crystals, 2nd Ed. (1995).

[6] Y. Sun, B. Davidovitch and G.M. Grason (in preparation).

4


