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In contrast to the standard approach, of beginning with a Hamiltonian and proceeding to
find its eigenstates, the featured reference invites us to consider the inverse problem. Given
a single eigenstate, can we reverse engineer the corresponding Hamiltonian of a many body
system? The answer to this question, modulo certain caveats, is argued to be yes. Given
the enormous amount of information packaged in a many-body wavefunction this may not
be surprising, and might seem to be of limited utility. However the reference goes beyond
this and argues that even just knowing a set of two point correlation functions, evaluated in
this single eigenstate, is sufficient to reverse engineer the Hamiltonian.

A crucial ingredient here is that the assumption that the Hamiltonian is local i.e. that
interactions decay rapidly with separation. Otherwise, one could simply use the projector
on the eigenstate as a Hamiltonian, while leaving its action on orthogonal states arbitrary.
These operators would be extremely nonlocal, and are eliminated by the restriction to local
Hamiltonians.

More concretely, the physical system one has in mind is a lattice system of spins, where
the Hilbert space on each site is finite (say ‘m’ dimensional, which for spin 1/2 per is m=2).
Further, locality of the Hamiltonian will be implemented by requiring that interactions have a
finite range k in lattice units, and all interactions with longer range are simply zero. So, with
just on-site and nearest neighbor coupling we have k = 2. For simplicity we imagine a 1D
system, although the results hold in arbitrary dimension. Say we are given a single eigenstate
|ψ〉 (either the ground state or an excited state) of a ‘k’ local Hamiltonian on this lattice. The
key idea is that one measures the correlators of the set of ‘k’ local operators Oa(r) centered
at r and labelled by a (collectively labeled α = (a, r)). On then calculates the correlation
Matrix [M]αβ = 〈ψ|OαOβ|ψ〉−〈ψ|Oα|ψ〉〈ψ|Oβ|ψ〉. This matrix is clearly Hermitian, but can
also be shown to be positive semidefinite (i.e. all eigenvalues are non-negative). If we have
included all local operators that could potentially appear in the Hamiltonian, that can also
be expanded as: H =

∑
α cαOα. The aim then is to find the coefficients in this expansion.

It can be readily shown that the Hamiltonian corresponds to the zero eigenvector of the
correlation matrix, i.e. in matrix notation the coefficients satisfy Mc = 0. This follows from
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observing that the quantity c†Mc is related to the fluctuations of the total energy in the
state |ψ〉, which vanishes for an eigenstate.

Notice, the set of parameters characterizing a local Hamiltonian is ‘small’ compared to
the number of parameters in a typical wavefunction. In a spin 1/2 chain with just on site and
nearest neighbor couplings, there are three nontrivial onsite operators σa, the three Pauli
matrices and nine two site operators σai σ

b
i+1, where a, b = 1, 2, 3. Hence, in all there are 12

matrices. So, in a chain with N sites, we need 12N parameters to specify the most general
such Hamiltonian (and significantly less if we assume translation invariance). In contrast,
the number of complex numbers entering a wavefunction is exponentially large in the size:
2N . Hence, most of the information in the wavefunction is redundant for this purpose and
one can distill the requisite information from the correlation matrix.

An important question pertains to the uniqueness of the solution. In several cases one
would actually expect more than one null eigenvector, leading to a family of solutions. For
example, in a system with a conserved charge, the operator measuring the total charge N
will, like the Hamiltonian, have no fluctuations in an eigenstate and is also local. Adding
µN to the Hamiltonian does not change its eigenstates and hence must be admitted. The
possibility of accidental degeneracies is more serious and can appear in certain cases such as
in many body localized with infinitely many local conserved quantities.

This technique may be useful for obtaining parent Hamiltonians from variational ground
states that model exotic states of matter, and may ultimately help in the search for such
phases. Also, for translationally invariant Hamiltonians, relatively few measurements are re-
quired. The measurements will however involve higher order correlators such as 〈σzi σzi+1σ

z
jσ

z
j+1〉

and an interesting question is if such measurements are feasible say using a quantum gas
microscope. Another important question is if deviating from the ground state, for exam-
ple because of finite temperature, would lead to significant errors when reconstructing the
Hamiltonian.

Other related works have argued [1] how one can use the eigenstate thermalization hy-
pothesis to extract the Hamiltonian from of a single excited state, although information
beyond two point correlators are needed. In Ref. [2], an algorithm to construct ground
states from the values of local observables was discussed.

The key problem of many body physics, of starting from a local Hamiltonian and pre-
dicting expectation values of local observables (for example in the ground state) is a map
from a ‘small’ vector cα, (linear in system size) to a small matrix (like M). Nevertheless one
has to take a diversion into an exponentially large space, the space of eigenstates, to achieve
this. In some situations, Matrix Product states and other tensor methods can tame this
exponential. The featured reference shows that the inverse problem, of recovering H from
M does not require this diversion.

In Quantum Many Body physics it appears that if you know the answer - some prop-
erties evaluated in an eigenstate - it is typically easy to go back to the question, i.e. the
Hamiltonian. This is apparently not the case for some other problems - for example in Ref.
[3] the answer, 42, was significantly easier to compute than the question.

I thank Yi Zhuang You and Adrian Po for helpful discussions.
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