
Journal Club for Condensed Matter Physics
https://www.condmatjclub.org

JCCM April 2018 03

Electronic correlations in bilayer-graphene
superlattices

1. Correlated insulator behaviour at half filling in magic-angle graphene
superlattices
Authors: Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi,
Efthimios Kaxiras, and Pablo Jarillo-Herrero
Nature http://dx.doi.org/10.1038/nature26154 (2018); arXiv:1802.00553e

2. Unconventional superconductivity in magic-angle graphene superlattices
Authors: Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi,
Efthimios Kaxiras, and Pablo Jarillo-Herrero
Nature http://dx.doi.org/10.1038/nature26160; arXiv:1803.02342

Recommended with a Commentary by Joerg Schmalian, Karlsruhe
Institute of Technology

Twisting two periodic lattices against each other at a small angle gives rise to large-scale
interference-like motives, so called moiré pattern. Twisting a graphene layer against a boron-
nitride layer has been investigated in the recent past and gives rise to such pattern and a
concomitant Hofstadter’s butterfly spectrum in a magnetic field[1]. The physical behavior
that emerges if one twists two single-layer graphene sheets against each other turns out to be
even richer. The precise manipulation and twist of two graphene sheets was accomplished
by Cao et al. in the above papers. Near a magic twist angle θ of about one degree a
narrow band is expected to form from Wannier states of the large supercell[2, 3]. Cao et al.
prepared such samples and identified correlated insulating, metallic, and superconducting
states, depending on temperature and carrier concentration. In the context of correlated
electron systems, the achieved ability to tune and manipulate a material is truly unique.
The twist angle determines the electronic structure. The charge carrier concentration can
be varied via a gate voltage over regimes that correspond to several carriers per unit cell.

The moiré patterns of the reported twist angles θ = 1.05◦ and θ = 1.16◦ have a lat-
tice constant a = a0/ (2 sin (θ/2)) of about 50 times that of graphene, where a0 ≈ 2.46 Å.
This corresponds to approximately 8 × 103 carbon atoms per unit cell. Given indications
for sample inhomogeneities, this makes the observations of low-T metallic charge trans-
port impressive. Remember, closely-related quasicrystals display electron localization with
a powerlaw-divergence of the resistivity[4]. Depending on the gate voltage, the carrier con-
centration was varied between ±4n0 relative to the charge neutrality point of graphene, see
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Figure 1: Fig.2 of the second paper by Cao et al.. a: Conductance for twist angle θ = 1.16◦

at zero magnetic field (red) and for B⊥ = 0.4 T (blue). n0 = ns/4 is the electron density per
unit cell. b and c: Resistance for different carrier concentration and T near n = −2n0.

Fig. 1. Here, n0 = 2√
3a2

corresponds to one electron per unit cell of the superlattice. For

θ = 1.06◦ this yields n0 ≈ 6.41 × 1011cm−2.
Correlated insulators: For n = ±4n0 a suppression of the conductivity is consistent

with band-insulating behavior. In addition, activated transport with dρ/dT < 0 for an
intermediate temperature regime was observed at commensurate fillings n = ±2n0 and less
pronounced for n = ±3n0. This behavior requires many-body interactions. Estimates of the
matrix elements of the electron-electron Coulomb interaction show that they are comparable
to the bandwidth. The precise nature of the insulating state is still unclear. The activation
energy Eg ≈ 0.3 meV of the resistivity is close to the temperature T ∗ ≈ 4 K above which
metallic behavior sets in rather suddenly. Such behavior could be the result of a density-
wave instability. Whether it is consistent with a Mott insulating state without additional
symmetry breaking near T ∗ remains to be explored. At zero magnetic field, the insulator at
half filling is in fact a metal ( dρ

dT
> 0) for T < 1K, but becomes truly insulating for a magnetic

field B⊥ = 0.4T perpendicular to the planes. This hints at sample inhomogeneities, where
superconducting regions short circuit the low-temperature transport. Increasing further the
magnetic field up to B⊥ = 8T suppresses the activation energy and destroys the insulator.
For moments of the order of a Bohr magneton, this field corresponds to energies comparable
to the charge gap Eg and to T ∗ . The absence of sharp features in the resistance could suggest
that no true symmetry breaking takes place. However, inhomogeneities of a random-field
type can easily wash out a sharp transition of a discrete order parameter.

Slightly reducing the electron concentration from the n = −2n0 insulator leads to a
state with small Fermi surface volume, obtained via magneto-oscillation measurements, that
grows linearly in x, where x = −2n0 − n. At the same time the degeneracy of Landau levels
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changes from the value four, observed elsewhere in the phase diagram (valley and spin), to
two. Thus, the insulator breaks a symmetry that is related to these two quantum numbers.
A small Fermi surface has only been observed for hope doping. Whether it is limited to a
very narrow regime of electron doping or the system phase separates remains to be seen.

Superconductor: Superconductivity was observed near the insulator at n = −2n0, see Fig.
1. So far, no superconductivity was observed near n = +2n0, i.e. on the “other side” of the
charge neutrality point of graphen. With the mentioned strong asymmetry w.r.t. electron
and hole doping relative to n = −2n0, it is curious that superconductivity occurs on both
sides, albeit over a narrower density range on the electron-doped side. No superconductivity
was observed once a large Fermi surfaces emerges. Transition temperatures up to Tc = 1.7 K
for hole doping are surprisingly large for a system with an estimated band width of a few
millivolts. If one could scale this up to the band width of mercury, the first superconductor
to be discovered, it would amount to a transition temperature above 104 K. For an in-plane
magnetic field, the superconductivity is Pauli-limited, as expected for singlet pairing. From
the upper-critical field perpendicular to the plane, a superconducting coherence length of
52nm was estimated, only about five lattice constants of the superlattice! Finally, Cao
et al. interpret oscillations of the current with B⊥ in terms of Josephson-junction-array
interferences. This implies spatial homogeneities that are correlated in space, an observation
that clearly deserves further attention.

From a the point of view of the charge-density distribution, the superlattice forms a
triangular lattice near those regions where carbon atoms of the same sub-lattices are right
on top of each other. However, from a symmetry point of view the appropriate low-energy
model is a two-orbital hexagonal lattice[5, 6]. The former should be relevant for local,
energetic arguments[7, 8] while the latter must be important if one wants to identify the
broken symmetries near commensurate fillings. Those could then be tied to the mechanism
for superconductivity.

Whether magic-angle twisted bilayer graphene will offer a blue print to solve the hight-Tc
problem remains to be seen. There are close analogies and clear differences between the
two systems. Nevertheless, the similarity in the phase diagrams does suggest a universal set
of principles for unconventional superconductivity, valid for systems with different lattice
symmetry and orbital degeneracy. Even if it turns out that cuprates and twisted bilayer
graphene are fundamentally different, it would hardly make this discovery less interesting.
A key novelty of the work by Cao et al. is the achieved control over the material. The
relevant degrees of freedom are determined by a comparatively unostentatious chemistry.
Thus, the low-energy model is much better defined, making it harder to ”re-adjust” theories.
One can therefore be optimistic that the community will soon be able to understand this
fascinating synthetic quantum material.
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