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A breakthrough in many body quantum chaos
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Random matrix theory is the cornerstone of our understanding of quantum chaos. There
is by now a mountain of numerical evidence indicating that generic non-integrable quantum
systems have energy level statistics governed by random matrix theory * - indeed whether the
level statistics obey random matrix theory is one of the most commonly used diagnostics for
ergodicity. Nevertheless, analytic derivations of random matrix statistics have until recently
only been available for one or few particle systems with a clear semiclassical limit. The
ubiquitous applicability of random matrix theory to many body quantum systems without a
clear semiclassical limit (e.g. spin chains) had until recently defied analytic understanding.
This particular fortress has now been breached, by the remarkable highlighted papers that
demonstrate how random matrix level statistics may be derived in certain clean (translation
invariant) many body quantum systems.

The papers in question make two key approximations. Firstly, instead of considering
Hamiltonian dynamics (i.e. evolution in continuous time) they consider instead quantum
circuits with discrete timestep evolution. Secondly, they specialize to circuits where the gates
that are applied are periodically repeated, such that one can apply the tools of Floquet theory.
That is, the time evolution is generated by a set of gates which repeat periodically every 7
timesteps, such that one can consider simply the stroboscopic or ‘Floquet’ time evolution
operator U(7), which generates time evolution by one period. It follows from unitarity that
the eigenvalues of U(7) must be unimodular, and can thus be denoted as exp(i¢,,), where
the ¢, are the eigenphases of the problem. The distribution of the eigenphases, in a chaotic
system, is expected to follow the circular ensembles of random matrix theory.

*Leaving aside special cases like many body localized systems, which are not described by random matrix
theory, but which possess a form of emergent integrability
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The particular quantity that is examined is the ‘spectral form factor’ of the Floquet
eigenphases. That is, if p(¢) is the normalized density of states of the eigenphases, and
R(0) = (p(¢ +0/2)p(¢ — 0/2)) — (p)? is the connected two point correlator of the densities
T then the spectral form factor for a system with Hilbert space of dimension N is given by
the Fourier transform
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Random matrix theory predicts that this spectral form factor should vanish as K ~ t at
small ¢, with a co-efficient that depends on the ensemble in question. The vanishing of K ()
at small t is related to the incompressibility of the spectrum.

Kos, Ljubotina and Prosen are able to calculate the spectral form factor analytically for
a particular clean (disorder free) many body quantum circuit, consisting of two timestep
evolution. Key to the analysis is that one of the two timesteps is ‘non-interacting’ (i.e.
consists purely of single qubit gates), while the other timestep, while containing abitrarily
long range interactions, involves only gates that are diagonal in the computational basis. The
authors are then able to map the computation of the spectral form factor to the partition
function of an Ising model on a ring of circumference ¢. In this manner they are able to
analytically derive a spectral form factor in agreement with random matrix theory over the
window of timescales tp < t < ty, where ty is the Heisenberg time of the system (exponential
in system size), while the critical time ¢ for onset of random matrix statistics is logarithmic
in system size. A similar logarithmic scaling of the critical time for onset of random matrix
statistics was found in [2, 3]. This is a tour de force result, corresponding to a analytic
derivation of random matrix level statistics in a clean many body quantum system, albeit
with long range interactions.

A further breakthrough is presented by Bertini, Kos, and Prosen, who analytically derive
the spectral form factor (and show that it agrees with random matrix theory) in a model
with interactions that are strictly local in real space. The model in question consists of
periodically repeated two timestep evolution, where the generating Hamiltonian for the first
timestep consists of a nearest neighbor Ising interaction and a longitudinal field, while that
for the second timestep consists only of a uniform transverse field. This shares again the
feature that one timestep consists only of single qubit gates, while the other consists only of
gates diagonal in the computational basis. To define ensemble expectation values it is further
convenient to introduce spatial randomness in the longitudinal fields. Once again, Bertini et
al are able to reinterpret the calculation of the spectral form factor as the transfer matrix
evaluation of a partition function, and hence to analytically obtain the spectral form factor
(which agrees with random matrix theory predictions) in the interval of times tg < ¢t < tg.
This time, the critical time ¢z for onset of random matrix statistics is found to be order one
in the thermodynamic limit (i.e. lacking the logarithmic divergence observed in the earlier
work). As an additional (remarkable) corollary, the results in the thermodynamic limit are
found to be independent of the strength of the disorder in the longitudinal fields. This
implies that random matrix level statistics may be derived both in the limit of zero disorder
(i.e. clean systems), and for arbitrarily strong but finite disorder - constituting an analytic
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tHere and below, expectation values are taken either over a window of timesteps, or, alternatively over
an ensemble of infinitesimally disordered systems



proof of the absence of localization in this model at any finite disorder strength.

Taken together, these works represent a remarkable breakthrough in our understanding of
many body quantum chaos. It remains to be seen to what classes of systems the techniques
introduced can be applied, and whether the understanding obtained can be generalized to
Hamiltonian dynamics (with continuous time evolution) - but the prospect of an analytic
understanding of the origin of random matrix statistics in many body quantum chaos is
in sight. The results also throw up a fascinating conceptual puzzle. Namely, the spectral
form factor obtained is that of a single many body quantum chaotic system, and is sharply
distinct from that of many ‘disconnected’” quantum systems. However, a thermodynamically
large system with purely local interactions develops this spectral form factor in order one
time - well before distant parts of the system establish causal contact. How does the system
know in so short a time that it is a single many body quantum system?

While I do not discuss them here, the reader is encouraged also to peruse the closely
related and contemporaneous works [1, 2, 3].
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