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In recent years, the subject of many-body quantum dynamics has attracted considerable
interest among theorists. The goal largely has been to develop analytically or numerically
tractable models from which one can deduce certain robust features associated with thermal-
ization, quantum chaos, and ‘scrambling’ dynamics of quantum information (e.g., entangle-
ment growth). One might think the first step in constructing such a model is to decide upon
a Hamiltonian, but some essential aspects of unitary quantum evolution may be gleaned
by examining the behavior of random quantum circuits (RQCs) [1], in which there is no
Hamiltonian at all! Rather, the unitary evolution of a system is defined by a set of random
S-matrices (see Fig. 1), each of which evolves a fixed number k of incoming qudit amplitudes
into k outgoing amplitudes, each qudit being a q-state entity (i.e. a generalized qubit, with
q = 2S+1 for a spin-S object). Each S-matrix is thus a qk×qk unitary matrix, typically
distributed according to the Haar measure. In such circuits, there are no locally conserved
quantities. Yet the dynamics of quantum information, as adduced from the spreading of
operators in time, or the behavior of ‘out-of-time-ordered correlation functions’ (OTOCs),
is quite simple, propagating as a diffusively broadening front such that the characteristic
spatial extent of any nontrivial local operator expands linearly with the ‘butterfly velocity’
vB
∗. Away from the front, relaxation is exponential. Such systems are ergodic – at long

times, operator correlations approach their infinite temperature values. While these RQCs
are purely noise-driven, their hydrodynamic description is believed to have applicability to
deterministic (nonrandom) ergodic quantum systems, whose internal dynamics ostensibly
generate endogenous noise.

When the random circuit is constructed so as to preserve a U(1) symmetry (charge
conservation) [2], the exponential relaxation becomes diffusive for operators which have
‘overlap’ with the local charge density, and the tail of the propagating front is modified.
Still, the system is ergodic, and is described by a Gibbs ensemble at late times.

Coincident with this work in many-body quantum dynamics, an exciting new class of
quantum states has been discovered and studied: fracton phases [3]. While global charge
conservation still permits local charge motion, in fracton systems the movement of elemen-
tary excitations is severely restricted; they are fully mobile only when agglomerated into

∗Entanglement spreading is characterized by a separate ‘entanglement velocity’ vE < vB.
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Figure 1: One-dimensional quantum circuits build from k-qudit gates, with k = 2 (left) and
k = 3 (right). Each qudit is a q-state object. Spatial (horizontal, periodic) and temporal
(vertical) coordinates are discrete.

multiparticle composites†. Nevertheless, when placed in contact with a heat bath, frac-
ton models thus far studied, while exhibiting strongly suppressed low-temperature charge
mobility, nevertheless do thermalize, albeit on a time scale which is exponential or even
super-exponential in 1/T [4].

Pai, Pretko, and Nandkishore (PPN) construct and explore models of random unitary
dynamics of one-dimensional fracton systems. Their basic idea is to constrain the dynamics
in such a way that not only is U(1) charge Q conserved, but dipole moment P is as well.
Individual charges cannot move independently, since their motion would change P . But,
similar to the state of affairs in higher-dimensional fracton models (such as the X-cube
model or Haah’s code), assemblies of local charges – dipoles in this case – are mobile. The
motivation is to construct noisy unitary quantum circuits with nonergodic phases, similar, for
example, to that of many-body localization (MBL). Their simplest fractonic circuit resembles
the right panel of Fig. 1, where each qudit is a S = 1 (q = 3) entity. The local charge on
site n is measured by the operator Szn. PPN’s S-matrices are three-qudit gates (of rank
qk = 33 = 27), and are constructed such that Q =

∑
n S

z
n and P =

∑
n nS

z
n are preserved.

Consequently, rather than being fully Haar-random, all their unitaries are almost diagonal in
the Sz basis, consisting of 19 random phases and four Haar-random 2×2 blocks. The latter,
for each spatially consecutive triple of qudits, allow for the transitions |+− 0〉 ↔ | 0+−〉 and
|−+ 0〉 ↔ | 0−+〉, corresponding to individual dipole motion, as well as | 0 + 0 〉 ↔ |+−+〉
and | 0 − 0 〉 ↔ |− +−〉, corresponding to motion of fracton charge accompanied by the
emission or absorption of a dipole.

The results are striking. While energy-conserving translationally-invariant fracton sys-
tems equilibrate, albeit slowly, PPN’s random fractonic circuits are nonergodic, retaining
memory of their initial conditions even at long times. Even though the dynamics allow for
the motion of charges, and there is no energy conservation, fractonic charge in RQCs fails

†As with topologically-ordered phases, gapped fracton phases exhibit degenerate ground states which
are indistinguishable by local operator measurements. Their ground state degeneracies typically grow with
system size (subextensively), while that for topologically ordered phases is of order L0.

2



to spread completely – a feature PPN attribute to the return statistics of low-dimensional
random walks, similar to the phenomenon of weak localization, but insensitive to dephasing.
It would thus be interesting to explore three-dimensional generalizations of PPN’s models.

Numerical simulations of operator spreading are shown in Fig. 2, which shows the evo-
lution of the ‘right weight profile’ ρR(n, t) =

∑
right(Γ )=n |aΓ (t)|2, where {Γ} is a basis of

operator strings, each of which is a product of local operators at each site. The time depen-
dence of any operator O can be expressed as O(t) =

∑
Γ aΓ (t)Γ , and in the evaluation of

right weights, only strings Γ whose rightmost non-identity operator is at site n contribute
to the sum. The left panel shows the spreading of a single local dipole operator; the peak at
the initial dipole position dissipates and emits a propagating and spreading front, similar to
what is found in generic charge-conserving RQCs [2]. The right panel shows the spreading of
a local charge operator. In this case, ρR(n, t) exhibits a lingering peak at the initial location
of the operator. A traveling and spreading front is again emitted, but its tail exhibits a
different power law behavior than for the dipole operator. In both cases, the right weight
profile appears to be self-averaging with respect to the randomness.

Figure 2: Local dipole (left) and local charge (right) operator spreading in random unitary
fractonic circuits, as measured by the ‘right weight profile’ ρR(n, t).

Another key distinction in the fractonic circuits is their saturation entanglement entropy.
Starting with an initial product state, the entanglement entropy SE(t) across a cut typically
rises linearly but eventually saturates. For generic RQCs exhibiting thermalization, the
saturation value of SE(t) is close to maximal, scaling linearly with the partition size. By
contrast, PPN find that for fractonic RQCs SE(t) plateaus at a value independent of the
partition size, consistent with a failure to thermalize.

PPN’s work establishes a new mechanism of ergodicity breaking - one which might pos-
sibly extend to three-dimensional systems. Memory of initial conditions is preserved by the
dynamics, even in the presence of noise. A tantalizing possibility suggested by their analysis
is that one and two-dimensional translationally-invariant fracton systems subject to Hamil-
tonian dynamics should exhibit robust, bona fide (i.e. no asymptotic delocalization) MBL,
since PPN’s arguments do not invoke the analytical apparatus (i.e. locator expansions) upon
which MBL no-go theorems rest.

There are two significant caveats. First, the numerical results obtained are for modest
system sizes (up to L = 21 sites). Second, and more crucially, is that all the above results
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apply only to initial conditions in which there is a vanishing fracton charge density, and are
in that sense finely tuned. For generic initial states, where the typical spacing l between
fracton charges is finite, dipoles may be emitted at one location and absorbed at another.
This implies a finite diffusion constant D ∼ l−2 for the fracton charges themselves. PPN find
that this gives rise to a coarsening behavior in which fracton charges asymptotically coalesce
at their center of mass at long times. The dynamics of this coarsening, and its consequences
for entanglement growth and saturation, are as yet unknown.
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