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This Commentary draws attention to a recent paper that discovers an overlooked possibility,
and associated richness, in the scaling of nonequilibrium interfaces. The underlying technical
point is that currents associated with scalar conservation laws do not have to be gradient
flows. The consequences appear to include a new phase governed by a strong-coupling fixed
point. I summarize the paper below.

The height profile h(x, t) of an interface constrained to keep constant the volumes of the
two domains it separates must obey a conservation law: ∂th = −∇ · J, where in general the
current J consists of a deterministic piece Jd and a Gaussian spatiotemporally white noise Jn

encoding thermal or other random fluctuations. For an interface at thermal equilibrium Jd

must act so as lower an interfacial energy H ∼
∫
x

√
1 + (∇h)2, i.e., Jd ∼ −∇δH/δh, so that

∂th ∼ −∇4h with unimportant nonlinear corrections. If the interface is in a stationary state
far from thermal equilibrium, then the mere fact that it separates two dissimilar media, i.e.,
that h and −h are not equivalent, means that nonequilibrium terms of the form (∇h)2 are
permitted in the effective chemical potential whose gradients drive Jd. Thus the h dynamics
should read [1]

∂th = −ν∇4h− λ

2
∇2(∇h)2 + η (1)

where the noise η = ∇ · Jn satisfies η(0, 0)η(x, t) = −2D∇2δ(x)δ(t), so that its strength
vanishes as q2 for wavenumber q → 0. The Sun-Guo-Grant [1, 2] equation (1), a conserving
variant of the KPZ equation [3], has generally been understood to be the universal description
of the dynamics of a nonequilibrium interface, without inversion symmetry along its normal,
that conserves the volume beneath it. Structure functions in d space dimensions are found to
scale as 〈|h(0, 0)−h(x, 0)|〉 ∼ |x|2χ and 〈|h(0, 0)−h(0, t)|〉 ∼ t2χ/z with spatial and temporal
scaling exponents χ = ε/3 and z = 4− ε/3 at first order in ε = 2− d (see [2]).

A hidden assumption, however, underlies the above discussion, as Caballero et al. point
out. The invariance h → h+ constant implies only that J must be built from gradients of
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h; the curl of J need not be zero. The conserved-KPZ term in (1) arises from a gradient
flow Jλ = (λ/2)∇(∇h)2, but a current of the form Jζ = ζ∇h∇2h (see also [4]), whose curl is
non-vanishing, is permitted at the same order in ∇ and h. Importantly, although Jζ can be
decomposed into irrotational and solenoidal parts, with only the former participating in the
equation of motion for h, the irrotational part of Jζ is distinct from Jλ. The authors offer
geometrical grounds for the existence of J2. It is potentially useful to view it as arising from
a current proportional to a force density that is the divergence of a stress ∇ih∇jh.

A perturbative one-loop dynamical renormalization-group (RG) analysis of (1) modified
by Jζ reveals runaway flows for 1 < d ≤ 2, with the case d = 2 being obviously of greatest
interest. The question is whether this is new physics or a pathology of the calculation. The
authors present the results of a direct numerical solution of the stochastic PDE which, for
d = 2, in the regime where the RG shows a runaway, displays strong growth of the height
variance at long times. They also find that localized peaks appear after a waiting period and
then coarsen. This makes a pretty convincing case for a new phase and scaling phenomena in
the runaway regime. The observations presented suggest an intriguing connection to mound
formation and related phenomena discussed in related models [5].
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