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One of the most extensively studied items in modern physics of correlated metals is
whether a Fermi-liquid (FL) behavior can be destroyed in dimensions D > 1. Two main roots
to non-FL physics have been proposed. One is to increase interactions and bring the system
close to a transition to a Mott insulator. Another is to keep interactions relatively weak, but
vary some parameter x, which can be either doping, or pressure, or a magnetic field, and bring
the system to an instability towards a spin or a charge order, either with zero momentum (a
Pomeranchuk order), or with a finite momentum (a spin or charge density wave). Near the
transition line Tcr(x) the dominant interaction between fermions is mediated by fluctuations
of a near-critical order parameter. The physics becomes particularly interesting when x is
adjusted to reach the quantum-critical point (QCP) Tcr(x) = 0, because then the dynamics of
the pairing interaction becomes relevant, and critical dynamic fluctuations may destroy a DL
behavior at T = 0. Perturbative one-loop calculations at various QCP’s in D ≤ 3 have shown
that the fermionic self-energy at T = 0 indeed has a non-FL form Σ ∝ ω1−α, with α < 1,
either on the whole FS, or at special FS points – hot spots. There have been numerous efforts
to go beyond one-loop and sum up particular series of diagrams. The ultimate desire was
to obtain the exact non-FL forms of fermionic and bosonic propagators in D > 1 dimension
larger than one. These studies chiefly focused on the two cases in D = 2 – the q = 0 nematic
QCP and the (π, π) spin-density-wave (SDW) QCP. The short summary of these studies is
the following [1, 2, 3]: (i) Higher-loop corrections are logarithmically singular. They generate
anomalous dimensions for fermionic and bosonic propagators, and, in the SDW case, also
shift the dynamical exponent z from initial z = 2 towards a smaller value, possibly z = 1 [1];
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(ii) A naked QCP is actually inaccessible as it is surrounded by a superconducting dome.
Superconductivity is mediated by the same interaction, which gives rise to a non-FL behavior,
and competes with a non-FL. There is no obvious small or large parameter at a QCP, and
the results (i) and (ii) have been obtained within approximate computation procedures (e.g.,
by using Eliashberg theory for superconductivity and anomalous dimensions). Because of
this limitation, there is a clear need to analyze non-FL physics at a metallic QCP using a
different, non-perturbative approach.
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Figure 1: (a-b) A SDW QCP. (a) – Phase diagram with SDW and d-wave superconducting
phases, (b) Tc vs the coupling λ. Dashed line is the one-loop result. (c-d)- A nematic QCP.
(s) The phase diagram with nematic and s-wave superconducting phases. Color coding is for
the exponent for the resistivity;(d) Fermionic self-energy in hot(red) and cold (blue) regions
at a QCP (h = hc) and away from it. Figs. (a,c,d) from Ref. [4], Fig. (b) from Ref. [5].

The papers which I recommend for reading are on this alternative approach – the nu-
merical Quantum Monte Carlo studies of quantum criticality in a metal. I selected three
publications – the review by Berg el al [4] (which contains references to earlier works by
the extended group), the paper by S. Wang et al [5] on the analysis of superconductivity
near a SDW QCP and a detailed comparison with the one-loop Eliashberg calculation of
d-wave Tc, and the very recent paper by Z-H Liu et al [6], also on SDW QCP, in which they
argue that they detected the anomalous exponent for the bosonic propagator. There have
also been QMC studies of CDW order in the cuprates [7] and of quantum criticality near
a topological transition [8]. QMC studies require some care, particularly in case of SDW
and CDW transitions, to avoid fermionic sign problem. This is done by using lattice models
with at least two bands [9]. Another restriction is the system size both in spatial and in
time direction, which does not allow to consider large systems and very low temperatures.
There is growing interest to combine QMC and machine learning to focus on fermion modes
that are directly associated with low-energy physics [10]. This will potentially allow QMC
studies to probe lower temperatures and larger system sizes.

One result, firmly established by QMC, is that both nematic and SDW metallic QCP
are surrounded by superconducting domes (see Fig.1, a-b). The authors of Ref. [5] made a
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detailed comparison of their QMC data for SDW QCP with the Eliashberg theory for the hot
spot low-energy model and found a near-perfect agreement at small and moderate couplings
(Fig. 1 c), despite that corrections to the Eliashberg theory are of order one even at weak
coupling.

Above Tc, QMC studies of the bosonic propagator at a SDW QCP have found [4, 5, 6]
the dynamical exponent z = 2, as in one-loop analytical studies. This likely indicates
that the scale below which the flow of z becomes visible, is too small for current QMC
studies. Nevertheless, in recent QMC work [6], Z-H Liu et al reported that they detected
the anomalous dimension of the bosonic propagator χ(q,Ωm) ∝ 1/((q − Q)2 + γ|Ωm|)1−η,
with η ≈ 1/8. The anomalous dimension has not been detected in QMC data away from
a QCP, i.e., is the system property at the QCP. A future work in this direction is highly
desirable. For a nematic QCP, the situation is more nuanced. The static bosonic propagator
obeys Ornstein-Zernike form, as is expected from the one-loop analysis. According to the
analytical treatment, the frequency dependence should be in the form of Landau damping
Ω/q (this corresponds to z = 3). QMC data at moderate coupling do show features consistent
with Ω/q dependence, if finite size corrections are included, however for larger couplings the
dependence is qualitatively different. Why is that is not clear.

The QMC studies of the fermionic properties along Matsubara axis did find that Σk(ωm)
shows a FL behavior away from a QCP and a non-FL behavior at a QCP, and that deviations
from a FL behavior are the strongest for fermions at hot spots, for a SDW QCP, or, for a
nematic QCP, for FS points where the form-factor is the largest (Fig. 1d). This is the
expected behavior. However, the non-FL self-energy at a QCP and, e.g., at a hot spot, does
not display an expected power-law frequency dependence, Σ(ωm) ∝ ω1−α

m . Instead, Σk(ωm)
becomes weakly dependent on frequency. This well may be due to thermal fluctuations,
because Σk(ωm) in QMC is obtained at a finite and not that small T , but this has not been
resolved yet.

So, where do we go from here? My personal view is that at the moment QMC studies
confirmed that a phase diagram of a QC metal has a dome of superconductivity around a
QCP (i.e., the pairing wins the competition with a non-FL), and that immediately above
the dome fermionic self-energy has a non-Fl form and the bosonic propagator shows the
anomalous dimension in the SDW case. They also questioned some features of the low-
energy theory, which were taken for granted, like z = 3 scaling at a nematic QCP. My
take is that the QMC results and the results of analytical studies of low-energy models will
eventually converge. However, QMC is also capable to explore the regime which was not
probed before. Namely, the vast majority of low-energy analytical studies is done under the
assumption that the fermion-boson coupling is smaller than the Fermi energy. QCP studies
can go outside this regime and study the QC behavior at stronger couplings. This will likely
reveal a novel NFL physics. Another item, which QMC studies recently began exploring, is
the transport near a QCP. Finally, there are many others QCP’s, which so far have not been
analyzed using QMC.

And the ”big” issue is the relation of both QMC and analytical studies of QC metals to
superconductivity, non-FL physics, and other features of the phase diagrams of cuprate, Fe-
based, and even heavy-fermion superconductors. Linear in T resistivity is indeed the central
issue here. In many QC theories, resistivity does show a linear behavior, but only above a
certain finite T0. In analytical studies, this T0 is determined only by order of magnitude.
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QMC studies of transport near a metallic QCP can well determine T0 with high accuracy and
either boost or invalidated the explanations based on metallic quantum criticality. Another
issue is thermodynamics, e.g., the T dependence of the specific heat, C(T ) in the non-FL
regime. According to analytical studies, C(T ) ∝ T log T at a SDW QCP and C(T ) ∝ T 2/3

at a nematic QCP. The T log T behavior agrees with the observed C(T ) in the cuprates, but
the true comparison requires one to know the prefactor. This is another area where QCP
studies are expected to produce definite results, which one can directly compare with the
experiments.
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