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The recent discovery of insulating behavior and superconductivity in twisted graphene
bilayers[1, 2] has attracted a great deal of attention among the contributors to the cond-mat
archive, as over 60 entries have been posted in the period March-October 2018 (see also a
previous entry in this journal club[3]). There are many reasons for this impact: new broken
symmetry phases in a two dimensional system, unconventional superconductivity, and novel
features in the electronic bands, among others.

The focus of this commentary is on interesting contributions to the latter issue, the
unconventional electronic bands of twisted graphene layers. As it is argued below, these
bands show features not encountered before in condensed matter physics. The articles listed
above have clarified significantly the mysteries of these bands, although a number of problems
remain open. Space considerations prevent a detailed analysis of the many insights into other
topics, such as superconductivity itself. Many interesting papers have also been posted in
the cond-mat repository recently.

The electronic structure of twisted bilayers was considered shortly after research on
graphene began[4]. This seminal paper provides the minimal model for this structure. The
basic idea follows the approach which leads from atomistic to tight binding and to continuum
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models for single layer graphene, and which finally gives the two dimensional Dirac equation.
Ref.[4] describes a hamiltonian in momentum space, where interlayer hopping conserves mo-
mentum. The rotation of the crystalline axes of one layer with respect to the other implies
that an electron with a given momentum in one layer shows up as a superposition of three
waves with three different momenta in the frame of reference appropriate for the other layer.
This continuum model describes well situations when the relative displacement of atoms in
different layers changes slowly compared to the atomic spacing in each graphene layer. It
has the additional advantage that it also describes incommensurate arrangements, where no
simple unit cell can be defined.

For large twist angles, this continuum model can be treated perturbatively, as interference
effects between interlayer hoppings at different locations effectively decouple the two layers.
Experiments further confirmed the validity of the model[5, 6]. Last, but not least, the
continuum model has symmetries not present in a real superlattice made from two twisted
graphene layers. In the continuum model, electrons in different valleys either in the same
or in different layers are decoupled, and the number of electrons per valley is conserved.
The electronic bands have spatial symmetries which are not necessarily present in lattice
models, as their existence depends on how one plane is rotated with respect to the other.
Deviations from these emergent symmetries are quite small in atomistic calculations for low
twist angles.

An important advance in the study of the electronic twisted bilayer graphene took place
when the model in[4] was systematically studied for small twist angles[7] (by small it is meant
angles such that θ . 1◦). Similar results where obtained using tight binding calculations[8].
The detailed results in[7] showed that for certain twist angles, defined as “magic angles” ,
the effective Fermi velocity of the bands closest to the Dirac energy vanished. As a result,
very narrow bands emerged, with bandwiths of a few meV. For these angles, the unit cell of
the superlattice contains over 10.000 atoms, and the lattice unit length is `M & 15nm. The
experiments reported in[2, 1] fabricated, in an ingenious way, graphene bilayers with a twist
angle of about 1.05◦, very close to the largest “magic angle” reported in[7]. The connection
between the unusual experimental results reported in[2, 1] and the magic angles intorduced
in[7] became very compelling.

The superlattice unit cell can be roughly divided into three interpenetrating lattices
with approximate AB,BA and AA stacking between the layers (A and B refer to the two
sublattices in a single layer), the AB and BA patterns corresponding the the observed
graphite stacking. Numerical calculations suggest that the charge density associated to the
low energy bands is mostly localized in the AA regions[8, 9]. If the lattice relaxation is
ignored (although it can be important at very small twist angles) these three regions have
equal size, see Fig.[1].

In order to consider the role of the electron-electron interaction within the lowest bands,
a local description of these bands is convenient, as it allows us to ignore he rest of the
electronic structure. The papers at the beginning of this commentary addressed the issue of
how to construct a local description of the narrow bands in twisted bilayer graphene at the
magic angles. The simplest local model which seems to take into account all the features
mentioned previously is a lattice of quantum dots, with four orbitals per spin each (there
are two subbands, plus two valleys), placed at the nodes of the triangular lattice where the
AA regions are located.
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Figure 1: Position of carbon atoms in the unit cell of twisted graphene bilayer. Only pairs
of atoms where one atom in one layer has a close neighbor in the other layer are shown.
The atoms in the figure form either triangular lattices (AB and BA regions), or honeycomb
lattices (AA regions). The twist angle is θ ≈ 1.35◦ and the number of atoms in the unit cell
is 7204.

The actual situation is much more nuanced and complex than the picture obtained from
a simple triangular lattice. To start with, a symmetry analysis of the properties of the
electronic states at the high symmetry point in the superlattice Brillouin Zone, the Γ, K and
M points, showed that the symmetries derived from a model based on a simple triangular
lattice do not agree with the features obtained either from the continuum or from tight
binding models[10, 11]. In particular, states at K and Γ change differently under certain
symmetry operations, while in a triangular lattice they should change in the same way.
Moreover, while the charge density of states at K and M are peaked at the AA regions, the
states at Γ are more evenly distributed throughout the unit cell. The observed concentration
of the integrated density at the AA regions is due to the higher weight of the perimeter of
the Brillouin Zone, where the K and M points are located.

All together, a consistent local description of the low energy subbands of twisted bilayer
graphene requires the definition of a honeycomb superlattice. This result is consistent with
description based on the continuum model mentioned earlier[12, 13], and with tight binding
results including details at the atomic scale[11]. The honeycomb structure is provided by
the centers of the AB and BA regions. However, Wannier functions whose charge density
were peaked at these locations will not explain the observed concentration of charge at the
AA regions. The solution of this problem is to define Wannier functions centered at the AB
and BA regions but with the maximum value of the charge density is at three lobes around
the centers, which lie in the AA regions. The phases of these Wannier functions are also non
trivial, as phases in neighboring lobes are shifted by ±(2π)/3, in a similar way to atomic
px ± ipy orbitals. As a result, each Wannier function seems to overlap with other Wannier

3



AB

BA

AB

BA

AB

BA

AA

Figure 2: Sketch of the Wannier functions of a twisted graphene bilayer. The functions are
defined at the nodes of a honeycomb lattice with the periodicity of the Moiré structure (gray
dots, located at regions with AB and BA stacking). Each Wannier function is made up of
three lobes, with maximum density at the centers of the hexagons defined by the honeycomb
lattice. Six different Wannier functions seem to overlap in these regions (which correspond
to AA stacking). Different microscopic phases make these functions mutually orthogonal,
see[12] for details.

functions located at the 12 nearest, next nearest and next next nearest neighbors in the
honeycomb lattice. The detailed structure of the wavefunctions at the AA regions makes
the integrated overlap between Waniier functions centered at different nodes to vanish. A
sketch of these unusual functions Wannier is shown in Fig.[2].

It is worth noting that the shape of the Wannier functions, as it is given by integrals of
the wavefunctions in momentum space, depends on the choice of phase of these wavefunc-
tions, which can be chosen arbitrarily. The standard procedure is to choose these phases so
that the localization in real space of the Wannier functions is maximal[14]. Bands with a
non trivial topology, such as those in Hall insulators, do not allow for a smooth choice of
phase throughout the Brillouin Zone. The topology of the bands is defined by a non zero
index, the Chern number, which, when different from zero, implies singularities in the gauge
field whose curl defines the Berry phase. This gauge field also encodes the relation between
nearby wavefunctions[15, 16], and its singularities, if not circumvented, lead to Wannier func-
tions which are not exponentially localized. This is the case of the single valley continuum
hamiltonians used to describe twisted graphene bilayers, as each valley hamiltonian breaks
time reversal invariance. This obstruction to the straightforward definition of localized Wan-
nier functions[13, 17] is overcome by the judicious choice of trial functions described in the
previous paragraph.

In summary, twisted bilayer graphene defines a system at the boundary between strongly
correlated materials and mesoscopic devices. Its electronic structure shows features not found
before in condensed matter physics. The role of these properties in the observed supercon-
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ductivity and insulating behavior is not yet fully settled. Another challenging problem is to
determine whether other systems share the unusual electronic structure sketched here.
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