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The past decade has seen a prodigious rise of machine learning (ML) applications to
several domains, including computer vision, automation, cybersecurity, and much more.
The high reputation of ML techniques, and most chiefly deep learning [1], comes from the
fact that they have successfully solved key problems in those applied areas, substantially
improving on existing technology. Given the generality of ML-based approaches, in recent
years we are witnessing a massive wave of ML applications to fundamental sciences, including
physics. This momentum, however, often makes the task of navigating through new literature
rather hard. In this respect, it is often challenging to grasp what the real potential of ML
applications to physics is, once some of the inevitable hype associated with the rise of this new
field is safely kept under control. One criterion I find useful for this purpose, is to focus on
whether the proposed ML technology allows to successfully, and convincingly address existing
challenging problems, improving on existing computational techniques. In this sense, what
makes ML applications to pure science clearly gaugeable, is that it is possible to devise very
stringent criteria to establish the success or failure of ML techniques applied to the solution
of challenging problems. For example, whereas it can be somehow subjective to establish a
baseline performance for image classification, it is much less subjective to establish how well
a machine must perform to improve on existing techniques in the realm of computational
physics. In this sense, ML applications targeting the direct solution of challenging physical
problems are natural candidates to assess the advances in the field, and try to answer to
some of the skeptical, “it’s all-hype” voices.

Wu, Wang, and Zhang consider the ambitious problem of solving statistical mechanics.
Take for example a classical spin system, described by the Boltzmann probability density

p(s1 . . . sN) =
e−βE(s1...sN )

Z
, (1)

where E(s1 . . . sN) is the energy of a given instance of spin configurations s ≡ s1 . . . sN ,
β = 1/kbT is the inverse temperature, and Z is the partition function. Among the several
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challenges posed by complex, interacting classical systems, stand out the problems of com-
puting the expectation value of physical quantities, as well as the free energy F = − 1

β
logZ.

While powerful techniques such as Monte Carlo sampling are routinely applied to solve these
tasks in important applications, there are however innumerable cases in which efficiently ex-
ploring the configuration space is plagued by large entropic barriers, and even the most
advanced Monte Carlo techniques fail. These can be for example a major source of concern
when studying complex systems with several metastable states, such as proteins or glasses.
This is definitely a field where some help from ML would be highly appreciated, and where
the performance of new ML-powered techniques can be conveniently measured.

Wu, Wang, and Zhang make an important first step in this direction, introducing an
approach that nicely connects the latest advances in ML as a mean to solve challenging
problems in statistical physics. The key for this connection is the variational formulation of
statistical mechanics. Consider for example a family of variational probability distributions
qθ(s), parametrized by a (possibly large) set of parameters θ. It is well known that the model
free energy

Fθ =
∑
s

qθ(s)

[
E(s) +

1

β
log qθ(s)

]
, (2)

satisfies the bound Fθ ≥ F . Minimizing Fθ with respect to the parameters θ then leads to a
reformulation of statistical mechanics in terms of a high-dimensional optimization problem.
This variational formulation of statistical mechanics is especially useful when a simplified
model qθ is adopted, for which the variational free energy is easily computed. A separable
ansatz qθ(s) = Πiθi(si) would result, for example, in the mean field approximation. An
outstanding historical problem for this formulation is that, however, providing accurate yet
computationally manageable ansatz probability distributions is a hard task.

Particularly innovative in Ref. [2] is the use of a highly expressive family of probability
distributions qθ, built on artificial neural networks consisting of a large number of parameters.
Specifically, Wu and coworkers adopt one of the most exciting methodological developments
the ML community has put forward in the past years: autoregressive models. Auto-regressive
networks are a family of probability distributions

qθ(s) = ΠN
i q

i
θ(si|s1 . . . si−1), (3)

where the full probability is factored into a product of conditional probabilities (see for
example [4, 5, 6]) . These conditional probabilities, qiθ(si|s1 . . . si−1), are themselves expressed
in terms of artificial neural networks. The key advantages of this ansatz are two. First of
all, because of the form (3), it is possible to sample exactly (i.e. without performing Markov
Chain Monte Carlo) from qθ. The sampling procedure boils down to generating the first spin
s1 at random according to the probability q1θ(s1), then, with the first spin fixed, the second one
is generated at random according to q2θ(s2|s1), until the last one is sampled conditioned to all
the previous, already drawn, values. Second, the flexibility of the neural networks guarantees
that highly non-trivial correlations among the spin variables can be efficiently encoded, going
substantially beyond mean field models. A simple example is obtained considering a single-
layer feed-forward network, with outputs ŝi = sigmoid(

∑
j<iWi,jsj). Here sigmoid(z) =

1/(1 + exp(−z)) is a non-linear activation function, loosely inspired by neurons physiology.
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of the gradient using e�cient direct sampling instead relying
on the correlated Markov chains. We perform the stochastic
gradient descent optimization of the parameters ✓ using the
gradient information.

To the best of our knowledge, the variational framework us-
ing deep autoregressive networks for statistical mechanics has
not been explored before. Our method can be seen as an exten-
sion to the variational mean-field methods with a more expres-
sive variational ansatz. Its representational power comes from
recently developed (deep) neural networks with guarantee of
universal expressive power [8]. Rather than a specific model,
we consider our approach as a general framework, analo-
gous to existing frameworks such as Markov chain Monte
Carlo (MCMC), mean-field, and tensor networks [22, 23].
When compared with existing frameworks, the features of our
method are: giving an upper bound to the true free energy;
e�ciently generating independent samples without needing
Markov chain, and is ideal for parallelization (on GPUs);
computing physical observables, such as the energy or corre-
lations, using a su�ciently large amount of samples without
any auto-correlations.

Numerical experiments To demonstrate ability of the
VAN approach in terms of accuracy of variational free en-
ergy and quality of sampling, we perform experiments on the
classic prototype for statistical mechanics problem, the Ising
model, where the energy function of configuration s is given
by E(s) = �P(i j) Ji j si s j, with (i j) denoting pair of connec-
tions. With di↵erent choices of J, we cover systems on di↵er-
ent topologies: 2-d square and triangular lattices, fully con-
nected systems; as well as systems with di↵erent behaviors:
ferromagnetic, anti-ferromagnetic, glassy, and as associative
memory.

We first apply our approach to the ferromagnetic Ising
model on 2-d square lattice with periodic boundary condition,
which admits exact solution [24]. We have tested two types of
network architectures, the 2-d convolution (Conv) and densely
connected (Dense) respectively, to verify our assumption that
taking into account the lattice structure is beneficial. More
details on the implementation are described in appendices.

The relative error of the free energy given by the autore-
gressive networks, NMF, and Bethe approximation are shown
in Fig. 2(a). The figure shows that deep autoregressive net-
works significantly improve the accuracy of the variational
calculation. The maximum relative error is around the criti-
cal point, where the system develops long range correlations.
We have observed that the network architecture with convo-
lution layers performs significantly better than dense connec-
tion, since it respects the two-dimensional nature of the lat-
tice, which is particularly beneficial when the correlation is
short ranged. However, around criticality, they exhibits simi-
lar performance.

Next, we apply the variational approach to the frustrated
antiferromagnetic Ising model on 2-d triangular lattice with
periodic boundary condition. The Ising spins does not order
even at the ground state due to frustration. Fig. 2(b) shows the
entropy per site versus inverse temperature � for various lat-

Figure 2. (a) Free energy per site and its relative error of ferromag-
netic Ising model on 16 ⇥ 16 square lattice with periodic boundary
condition. (b) Entropy per site of anti-ferromagnetic Ising model
on triangular lattices of various sizes L with periodic boundary con-
dition. The exact result (dashed line) at T = 0 and L ! 1 is
S/N = 0.323066 [25, 26].

tice sizes. Reaching a finite entropy density indicates that the
system processes an exponentially large number of degener-
ate ground states. Extrapolation of � ! 1 shows that the au-
toregressive network variational ansatz correctly captures the
exponentially large number of ground states. In comparison,
describing such feature has been challenging to conventional
MCMC and mean-field approaches.

Next, to demonstrate the ability of the model on captur-
ing multiple modes at low temperature, we consider the Hop-
field model [27], which is a generalized Ising model with cou-
plings composed of P random patterns, Ji j =

1
N
PP
µ=1 ⇠

µ
i ⇠
µ
j ,

with {⇠µ} 2 {±1}N denoting a random pattern. At a low tem-
perature with P small, the system has a retrieval phase where
all P patterns are remembered by the system, hence there are
P pure states in the system [28, 29]. The experiments are car-
ried out on a Hopfield network with N = 100 spins and P = 2
orthogonal random patterns. At low temperature the energy
(probability) landscape contains 4 modes, corresponding to 2
stored patterns and their mirrors (due to Z2 symmetry). We
start training our model at � = 0.3 and slowly anneal the
temperature to � = 1.5. At each step, we collect configu-
rations sampled from the trained autoregressive network and
show their log probability ln(p) as a surface plot in Fig. 3. The
sampled configurations are projected into a two-dimensional
space spanned by two stored patterns, thus in the figures X
and Y-axes are overlap (inner product, normalized to the range
[�1, 1]) between the configuration and two patterns respec-
tively. Z-axis is the log probability.

The figure shows that at an high temperature with � = 0.3,
samplings are not correlated with the two stored patterns, the
system is in the paramagnetic state. The log probability land-
scape is quite flat, as the Gibbs measure is dominated by en-
tropy. While when the inverse temperature � is increased to
1.5, we can see clearly from the right panel of the Fig. 3 that
four peaks of probabilities completely emerge, having domi-
nating probability with respect to other configurations. These
four peaks touch coordinates [1, 0], [0, 1], [�1, 0] and [0,�1]
in the X-Y plane, which correspond exactly to the two patterns
and their mirrors. This is an evidence that our approach avoids
collapsing into a single mode, and gives samplings capturing
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Figure 3. Log probability of sampled configurations from VAN
learned for an Hopfield model with N = 100 spins, and P = 2 or-
thogonal patterns, on the two-dimensional space spanned by the two
patterns. X-axis (O1) and Y-axis (O2) represent inner product (over-
lap) between each sampled configuration and the first and the second
stored patterns respectively. Our network uses single layer and only
N(N � 1)/2 parameters. In the left panel, � = 0.3, system is in the
paramagnetic phase. And in the right panel, � = 1.5 and system is in
the retrieval phase. Note the di↵erent scales in the colorbars.

the features of the whole landscape despite that those modes
are separated by high barriers due to the first-order transition
in the Hopfield model.

Compared with the landscape of Hopfield model in the re-
trieval phase which exhibits several local minima in the en-
ergy and probability landscape, models in the spin glass phase
are considerably more complex [30], because they have in-
finite number of pure states, in the picture of replica sym-
metry breaking [31]. Here we apply the developed method
to the classic Sherrington–Kirkpatrick [32] model where N
spins are connected to each other by couplings Ji j drawn from
Gaussian distribution with variance 1/N. So far the tensor
network approaches do not apply to this model because of
long range interactions and the disorder (which causes neg-
ative Z issue [33]). On the thermodynamic limit with N ! 1
where the free energy concentrates to its mean value aver-
aged over disorder, using for example replica method and cav-
ity method, and replica symmetry breaking, i.e. Parisi for-
mula [31]. On a single instance of SK model, the algorithm
version of the cavity method, belief propagation or Thouless–
Anderson–Paler [6] equations apply as message passing algo-
rithms. On large systems in the replica symmetry phase the
message passing algorithms converge and Bethe free energy
is a good approximation, but in the replica symmetry break-
ing phase they fail to converge. Also notice that even in the
replica symmetry phase, Bethe free energy is not an upper
bound to the true free energy.

As a proof of concept, we do experiments on a SK model
with a small system size N = 20, because in this way we can
enumerate all 2N configurations, compute the exact values of
free energy, then evaluate the performance of our approach.
As opposed to models defined on lattices, there is no topology
structure to apply convolution. We choose to use the simplest
autoregressive network with only one layer and total number
of parameters equals N(N � 1)/2, which is even smaller than
that used in the belief propagation, N(N � 1).

In Fig. 4(a) we show the obtained free energy compared
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Figure 4. (Left:) Comparison of the free energy obtained using dif-
ferent methods, on an SK model with N = 20 spins. VAN uses single
layer network with N(N � 1)/2 parameters. The inset shows relative
errors to exact values in a larger � regime. (Right:) The reconstruc-
tion error in the inverse Ising problem given by di↵erent methods.
The underlying model is an SK model with N = 20 spins. Data cor-
relation used for reconstruction are computed exactly by enumerating
all 2N configurations. VAN uses a two-layer autoregressive network
with 2050 parameters.

against naïve mean-field (NMF), and Bethe approximation via
iterating the belief propagation equations (BP) [5]. In our
experiments, BP stopped converging at the spin glass phase
when � > 1.0, then we used a large damping factor to force
it to converge. However, in this instance damping only works
up to � = 1.5, so we report Bethe free energy with �  1.5.
From the figure we can see that the free energy of our method
is much better than mean-field and Bethe free energy, and are
even indistinguishable to the exact free energies. This is quite
remarkable considering that our model adopts only N(N�1)/2
parameters. We also checked that our approach not only gives
a good estimate on free energy, energy and entropy, it also
obtains accurate magnetizations and correlations.

The ability of solving ordinary statistical mechanics prob-
lems also gives us the ability to solve inverse statistical me-
chanics problems. A prototype problem is the inverse Ising
problem which asks to reconstruct couplings and external field
of an Ising (spin glass) model given magnetizations and cor-
relations of the underlying model [18]. It is well known that
the Ising model is the maximum entropy model given the first
and the second moments, so the couplings are uniquely deter-
mined by correlations of the model which are given as data.
The problem has been studied for a long time especially in
the field of statistical mechanics [34], mainly using mean-field
based methods.

The adaptation of our method for the inverse problem is
straight forward by repeating the following two-step proce-
dure until the correlations of VAN are close enough to the
(given) correlations of the underlying Ising model: (1) Learn
a VAN according the Ising model with an existing Ji j by mini-
mizing the variational free energy; (2) Compute pairwise cor-
relations of VAN via direct sampling, then update Ji j accord-
ing to the di↵erence between two sets of correlations. Our re-
sults are shown in the Fig. 4 right, where we can see that our
method works much better than the popular mean-field meth-
ods of naïve mean-field [35, 36], Sessak–Monasson small-
correlation expansions [37], and that based on Bethe approxi-
mation [38, 39], especially in the glassy phase with � > 1.

Figure 1: Free energy calculations using the VAN approach as a function of inverse temper-
ature β, from Ref. [2]. (Left) Ising model on a 16x16 square lattice. The relative error on
the free energy is plotted in the inset, as compared to mean field (green crosses) the Bethe
approximation (blue empty dots). (Right) Disordered Sherrington-Kirkpatrick model for 20
spins, for a fully-connected VAN with only about 100 free parameters.

In this case, the variational parameters are the weights Wi,j, the condition j < i in the
sum guarantees the auto-regressive property, and the probabilities are qiW (si|s1 . . . si−1) =
ŝiδsi,+1 + (1− ŝi)δsi,−1.

Once the ansatz probability is fixed, the learning algorithm devised by Wu and cowork-
ers is a version of the REINFORCE algorithm used in variational inference (see [3] for an
introduction). In brief, at each learning step a (possibly large) batch of samples from the
current qθ is drawn, and the gradient ∇θFθ is approximated as an expectation value of a
suitable quantity over those samples. The gradient information is then used to update the
parameters in the probability distribution, re-sample new spin configuration, etc until con-
vergence is achieved. The authors overall dub this approach to statistical mechanics as VAN
(Variational Autoregressive Networks). This effectively constitutes a self-learning approach,
in which no external data is used but the information about the energy of the system. A
similar learning rule is used in the context of many-body quantum applications, where the
wave-function amplitudes are parametrized with artificial neural-networks [7].

In their paper, Wu and coworkers apply the VAN technology to several spin models,
and also considering several neural-network architectures with the autoregressive property.
To start with, a sanity check on the 2-dimensional Ising model (Figure 1, left) reveals that
neural-network based models are powerful enough to deliver very accurate predictions (a
part over ten thousand accuracy or better) on the free energy. This is in line with what
expected from the flexibility of artificial neural networks as functional approximations. The
power of the autoregressive property, on the other hand, is mostly chiefly exposed when the
Boltzmann weight is dominated by multiple modes, possibly separated by large free-energy
barriers. Those are typically the most challenging cases for Markov Chain Monte Carlo, and
those where an exact sampling can be highly beneficial. Applications to a prototypical spin
glass model, (Figure 1, right) as well as to other degenerate ground-states, show that also in
this case the VAN approach remains very effective.
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Overall, this technique provides a very interesting addition to the arsenal of computa-
tional techniques already available to solve statistical physics models. The limitation of this
approach, that future studies will need to confront with, is that the optimization (learn-
ing) process for the neural-network parameters is an intrinsically hard task. In this sense,
the original complexity of solving for the free energy of the underlying statistical physics
problem is moved to the complexity of solving a high-dimensional optimization problem. In
practice, this kind of optimization problem is routinely efficiently solved in modern ML ap-
plications, and applications to statistical physics will also try to benefit from the knowledge
and technology developed for industry applications.
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