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The past decade has seen a prodigious rise of machine learning (ML) applications to
several domains, including computer vision, automation, cybersecurity, and much more.
The high reputation of ML techniques, and most chiefly deep learning [1], comes from the
fact that they have successfully solved key problems in those applied areas, substantially
improving on existing technology. Given the generality of ML-based approaches, in recent
years we are witnessing a massive wave of ML applications to fundamental sciences, including
physics. This momentum, however, often makes the task of navigating through new literature
rather hard. In this respect, it is often challenging to grasp what the real potential of ML
applications to physics is, once some of the inevitable hype associated with the rise of this new
field is safely kept under control. One criterion I find useful for this purpose, is to focus on
whether the proposed ML technology allows to successfully, and convincingly address existing
challenging problems, improving on existing computational techniques. In this sense, what
makes ML applications to pure science clearly gaugeable, is that it is possible to devise very
stringent criteria to establish the success or failure of ML techniques applied to the solution
of challenging problems. For example, whereas it can be somehow subjective to establish a
baseline performance for image classification, it is much less subjective to establish how well
a machine must perform to improve on existing techniques in the realm of computational
physics. In this sense, ML applications targeting the direct solution of challenging physical
problems are natural candidates to assess the advances in the field, and try to answer to
some of the skeptical, “it’s all-hype” voices.

Wu, Wang, and Zhang consider the ambitious problem of solving statistical mechanics.
Take for example a classical spin system, described by the Boltzmann probability density

e—ﬁE(sl...sN)
porsn) = ()

where FE(s1...sy) is the energy of a given instance of spin configurations s = sp... sy,
B = 1/k,T is the inverse temperature, and Z is the partition function. Among the several
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challenges posed by complex, interacting classical systems, stand out the problems of com-
puting the expectation value of physical quantities, as well as the free energy ' = —% log Z.
While powerful techniques such as Monte Carlo sampling are routinely applied to solve these
tasks in important applications, there are however innumerable cases in which efficiently ex-
ploring the configuration space is plagued by large entropic barriers, and even the most
advanced Monte Carlo techniques fail. These can be for example a major source of concern
when studying complex systems with several metastable states, such as proteins or glasses.
This is definitely a field where some help from ML would be highly appreciated, and where
the performance of new ML-powered techniques can be conveniently measured.

Wu, Wang, and Zhang make an important first step in this direction, introducing an
approach that nicely connects the latest advances in ML as a mean to solve challenging
problems in statistical physics. The key for this connection is the variational formulation of
statistical mechanics. Consider for example a family of variational probability distributions
qo(s), parametrized by a (possibly large) set of parameters 6. It is well known that the model
free energy

B = Swls) [E6)+ S losants)|. 2)

satisfies the bound Fy > F. Minimizing Fy with respect to the parameters ¢ then leads to a
reformulation of statistical mechanics in terms of a high-dimensional optimization problem.
This variational formulation of statistical mechanics is especially useful when a simplified
model ¢y is adopted, for which the variational free energy is easily computed. A separable
ansatz go(s) = I1;0;(s;) would result, for example, in the mean field approximation. An
outstanding historical problem for this formulation is that, however, providing accurate yet
computationally manageable ansatz probability distributions is a hard task.

Particularly innovative in Ref. [2] is the use of a highly expressive family of probability
distributions gy, built on artificial neural networks consisting of a large number of parameters.
Specifically, Wu and coworkers adopt one of the most exciting methodological developments
the ML community has put forward in the past years: autoregressive models. Auto-regressive
networks are a family of probability distributions

@(s) = ILVgy(sils1...si-1), (3)

where the full probability is factored into a product of conditional probabilities (see for
example [4, 5, 6]) . These conditional probabilities, g (s;|s; - . - $;_1), are themselves expressed
in terms of artificial neural networks. The key advantages of this ansatz are two. First of
all, because of the form (3), it is possible to sample exactly (i.e. without performing Markov
Chain Monte Carlo) from gy. The sampling procedure boils down to generating the first spin
s1 at random according to the probability g4 (s; ), then, with the first spin fixed, the second one
is generated at random according to g3(sz|s1), until the last one is sampled conditioned to all
the previous, already drawn, values. Second, the flexibility of the neural networks guarantees
that highly non-trivial correlations among the spin variables can be efficiently encoded, going
substantially beyond mean field models. A simple example is obtained considering a single-
layer feed-forward network, with outputs §; = sigmoid(}_,_, Wi ;s;). Here sigmoid(z) =
1/(1 + exp(—=z)) is a non-linear activation function, loosely inspired by neurons physiology.
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Figure 1: Free energy calculations using the VAN approach as a function of inverse temper-
ature f, from Ref. [2]. (Left) Ising model on a 16x16 square lattice. The relative error on
the free energy is plotted in the inset, as compared to mean field (green crosses) the Bethe
approximation (blue empty dots). (Right) Disordered Sherrington-Kirkpatrick model for 20
spins, for a fully-connected VAN with only about 100 free parameters.

In this case, the variational parameters are the weights W ;, the condition j < in the
sum guarantees the auto-regressive property, and the probabilities are giy (s;|s1...si-1) =
§i0s; 11+ (1 — 8;)ds, 1.

Once the ansatz probability is fixed, the learning algorithm devised by Wu and cowork-
ers is a version of the REINFORCE algorithm used in variational inference (see [3] for an
introduction). In brief, at each learning step a (possibly large) batch of samples from the
current gy is drawn, and the gradient VyFy is approximated as an expectation value of a
suitable quantity over those samples. The gradient information is then used to update the
parameters in the probability distribution, re-sample new spin configuration, etc until con-
vergence is achieved. The authors overall dub this approach to statistical mechanics as VAN
(Variational Autoregressive Networks). This effectively constitutes a self-learning approach,
in which no external data is used but the information about the energy of the system. A
similar learning rule is used in the context of many-body quantum applications, where the
wave-function amplitudes are parametrized with artificial neural-networks [7].

In their paper, Wu and coworkers apply the VAN technology to several spin models,
and also considering several neural-network architectures with the autoregressive property.
To start with, a sanity check on the 2-dimensional Ising model (Figure 1, left) reveals that
neural-network based models are powerful enough to deliver very accurate predictions (a
part over ten thousand accuracy or better) on the free energy. This is in line with what
expected from the flexibility of artificial neural networks as functional approximations. The
power of the autoregressive property, on the other hand, is mostly chiefly exposed when the
Boltzmann weight is dominated by multiple modes, possibly separated by large free-energy
barriers. Those are typically the most challenging cases for Markov Chain Monte Carlo, and
those where an exact sampling can be highly beneficial. Applications to a prototypical spin
glass model, (Figure 1, right) as well as to other degenerate ground-states, show that also in
this case the VAN approach remains very effective.



Overall, this technique provides a very interesting addition to the arsenal of computa-

tional techniques already available to solve statistical physics models. The limitation of this
approach, that future studies will need to confront with, is that the optimization (learn-
ing) process for the neural-network parameters is an intrinsically hard task. In this sense,
the original complexity of solving for the free energy of the underlying statistical physics
problem is moved to the complexity of solving a high-dimensional optimization problem. In
practice, this kind of optimization problem is routinely efficiently solved in modern ML ap-
plications, and applications to statistical physics will also try to benefit from the knowledge
and technology developed for industry applications.
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