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Despite three decades of study, the fractional quantum Hall (FQH) effect remains one of
the most remarkable phenomena in condensed matter physics. In addition to the quantiza-
tion of Hall conductance to fractions of e2/h, FQH states realizes quasiparticle excitations
that carry fractional charge and anyon statistics. Ultimately, all these phenomena arise from
the breakup or fractionalization of the electron. Obtaining such an unusual form of matter
requires rather special conditions. Indeed the traditional route to realizing FQH states in-
volves restricting electrons to two dimensions in a strong magnetic field when the spectrum
consists of degenerate Landau levels. Further, on partially filling a Landau level and cooling
to low temperatures, FQH states emerge - for example the celebrated Laughlin state emerges
at 1/3 filling of the lowest Landau level.

Clearly, it would be desirable to find other, less restrictive settings where the FQH effect
could occur. Fractional Chern insulators (FCIs) have been proposed to occur in crystals with
‘Chern bands’, two dimensional band structures which carry a Chern number, implying a
topology similar to Landau levels. On partially filling such Chern bands and in the presence
of strong electron-electron interactions, FQH states have been shown, in theory, to emerge.
Although this situation is conceptually rather similar to partially filling a Landau level, it
may confer practical advantages in realizing FQH at elevated temperatures.

In contrast, the featured reference points out an entirely new regime for the FQH.
The proposed ingredients are: (i) a two dimensional crystal with broken time reversal

(and reflection) symmetry. No magnetic field is applied. This ingredient is common to the
previously mentioned fractional Chern insulators. However the following two ingredients are
new. (ii) The electron filling is an integer and not a fraction and (iii) An overlap of two
bands, an electron band and a hole band, with different angular momenta. It is argued that
when the difference in angular momentum between the two bands m is odd, a quantum Hall
state can emerge. It is readily shown that an integer quantum Hall state will occur when
m = ±1, even for free electrons. However, the nontrivial claim is that FQH states can arise
when |m| > 1 and an odd integer. Note, in this setup m also indexes the Laughlin state
realized, which is controlled, not by the fractional filling, but by the difference in angular
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momentum of the two touching bands. The quantized Hall conductance is predicted to be
1/m in units of e2/h, despite the integer filling.

To contrast this with the usual setup, recall that in the case of the lowest Landau level,
the Laughlin states take the form:

Ψ(z1, z2, . . . , zN) =
∏
i<j

(zi − zj)me−
∑

i |zi|2/4l2B

where lB is the magnetic length and m is an odd integer. The ‘j’th particle is labeled
by the complex coordinates: zj = xj + iyj. When m = 1, this is the Integer quantum hall
effect, which is nothing but the Slater determinant wavefunction of noninteracting electrons
obtained by filling all states in the Landau level. However, when m = 3 this gives the Laugh-
lin state with fractional Hall conductance 1/3. A key feature is the presence of ‘vortices’, or
zeros of the wavefunction, the factors (zi − zj)3 in the wavefunction. The higher the power
involved, the more effectively the electrons are kept apart, which forms the intuitive basis
for the stability of the FQH state in the presence of repulsive interactions.

In the featured reference, both an electron and a hole band is present, and the locations
of the electrons zj and holes wj are introduced in the many body wave-function (see also
Ref.[1]). One is in the ‘compensated’ regime, with equal numbers of electrons and holes.
Consider now a wave-function in which the amplitude for a configuration with N electrons
and N holes is given by:

ΨN({zj, wj}) =

∏
i<i′(zi − zi′)m

∏
(wj − wj′)

m∏
i,j(zi − wj)m

(1)

It is argued that under certain assumptions this is in the same topological phase as the
Laughlin m state. In particular it is easily shown that the m = 1 is simply the ground state
of non-interacting electrons forming a Chern insulator, when a pair of bands that differ by
angular momentum 1, overlap. A model that demonstrates this is:

Hm=1 =
∑
k

ε(k)
[
c†kck − d

†
kdk

]
+ ∆kc

†
kdk + h.c. (2)

where the kinetic energy ε(k) = k2/2 − v is opposite for the two bands, the electrons
operators being c for the electron band and d for the hole band. Generally these bands will
mix, which is captured by the second term, the mixing matrix element ∆ has to account for
the difference in angular momentum of the two bands. When the angular momentum of the
electron and hole bands differs by 1, then ∆k ∼ (kx + iky). Now, as a function of the band
overlap, which is controlled by v, one gets different phases (see Figure). When v < 0, the
bands are separated and one has a trivial insulator. But as we push the bands on top of one
another by increasing v, the band gap vanishes at v = 0. Further for v > 0 one obtains a
‘band inversion’ and the gap reopens to give an insulator. It can be shown that this is an
integer quantum hall (or Chern) insulator and the resulting wavefunction has the form in
Eqn1 with m = 1.

The intellectual leap made in the paper is for the case when m 6= ±1 but an odd integer.
Now, the band overlap function is ∆k ∼ (kx + iky)

m. Again, for noninteracting electrons a
similar logic would predict a transition from a regular insulator to an insulator with integer
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Figure 1: Phase Diagram for electron and hole bands with different angular momenta as a
function of band overlap ‘v’.

Chern number (albiet different from unity). However, in the presence of repulsive electron-
electron interactions, it is noted that the wave-function in Eqn. 1 does a much better job
of keeping electrons away from other electrons (and keeping holes away from other holes).
One may then expect a transition into a FQH state in the presence of interactions, if the
conditions are right. Indeed the featured reference constructs toy models with interactions
that are tailored to obtain ground states that include the state given by Eqn. 1. It remains to
be seen if more realistic models will also lead to a FQH ground state, and more importantly
if they lead to a realization in experiments.

If this program is successful, it will help realize the long standing hope of obtaining exotic
quantum states in relatively mundane electronic systems.

I thank Eslam Khalaf for useful discussions.
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