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Figure 1: An example of a rough en-
ergy function H[w], for N = 2.

Consider the following mathematical problem.
Given is a set of N real variables w ∈ RN , and a
Hamiltonian (energy) function H[w]. The variables
are initialized in equilibrium at temperature T0, with
probability P0[w0] ∝ exp{−H[w0]/T0}. The energy
is then minimized by gradient descent,

dwi
dt

= −∂H
∂wi

, w(t = 0) = w0 , (1)

corresponding to an instantaneous “quench” to zero
temperature. If the energy function is convex, e.g.
quadratic, then the gradient descent always asymp-
totically converges to its absolute minimum, the
ground state of the system. If, however, the energy
function is “rough”, i.e. it has a lot of local minima
and saddle points (Fig. 1), then (i) the gradient descent might remain trapped for very long
time in the vicinity of saddles, where the gradient is very small, before eventually reaching
a minimum, and (ii) a different minimum will be reached depending on the initial condition
– hence, in general, the final minimum will not be the absolute one.

Rough energy functions are far from being exotic objects: they are routinely encountered
in many important fundamental and practical problems. Some examples are: optimization
problems such as the traveling salesman problem, i.e. the problem of finding the minimum
path connecting a set of cities, where H is the distance traveled along a given path w [1];
glassy materials such as silicates, where H is the potential energy due to pair interactions of
atoms in positions w [2]; a population of bacteria trying to maximize their fitness, where H is
the negative of fitness and w is a coordinate in genotypic space [3]; and, of course, training a
neural network to perform some task such as classification, where w are the neuronal weights
and H[w] is the cost of misclassifying the training data [4].

Understanding the properties of the gradient descent dynamics is very important in all
these applications. In particular, one would like to characterize the distribution P∞[w∞] of
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the final states reached at t→∞, as a function of the initial temperature T0. Unfortunately,
this requires solving the dynamics of the problem, which is often a very difficult technical
task. One of the holy grails in the domain has been characterizing P∞[w∞], at least partially,
without solving the dynamics explicitly, i.e. using information on H[w] only. For example,
can one compute the average energy of the final states? And given that the gradient vanishes
in the final state, does the next order in the expansion, i.e. the Hessian matrix ∂2H

∂wi∂wj
, have

some particular property?
A milestone result in this field has been the solution of the so-called spherical pure p-spin

model, which is one of the simplest models of rough high-dimensional energy function [5].
For p = 3, the energy function can be written as a sum of p = 3-variable interactions

H[w] =
∑
ijk

Jijkwiwjwk + µ
∑
i

w2
i , (2)

where the couplings Jijk are independent Gaussian variables with zero mean and variance
1/N2, and µ is a Lagrange multiplier used to keep w confined via the condition

∑
iw

2
i = N .

e

eth
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Figure 2: In the pure p-spin energy
function, saddles (minima) dominate
above (below) the threshold. States
prepared at high T0 loose memory of
the initial condition and end up surf-
ing on the threshold (blue). States
prepared at low T0 end up in a nearby
minimum (red).

Any choice of p ≥ 3 leads to a very rough energy
function, with a number of stationary points grow-
ing exponentially in N . The energy function of the
p-spin model then displays a sharp topological tran-
sition when N → ∞ [6, 7]. There exists a thresh-
old energy eth, such that, with probability one when
N →∞, stationary points (i.e. zero-gradient points)
of H are minima for NeGS ≤ H[w] < Neth, while
they are saddles for H[w] > Neth. The argument to
show this is pretty simple:

1. It can be shown that the Hessian matrix of
Eq. (2), in a stationary point, is a real symmet-
ric Gaussian matrix, with the diagonal shifted
by the Lagrange multiplier µ. Its eigenvalue
density ρ(λ) is a Wigner semicircle [8] supported
in λ ∈ [λ−, λ+], with λ± = µ± 2

√
p(p− 1).

2. Furthermore, the Lagrange multiplier of Eq. (2)
is related to the energy by µ = −pH/N = −pe.

It follows that λ− = −pe − 2
√
p(p− 1) is the lower

edge of the spectrum. If e < eth =
√

2(p− 1)/p, then
λ− > 0 and all eigenvalues are positive: the stationary
point is a minimum. If e > eth, some eigenvalues
are negative: it is a saddle. States with e = eth are
marginally stable: they have flat directions associated to zero eigenvalues of the Hessian.

Furthermore, the dynamics of the spherical p-spin can be solved exactly. One can estab-
lish a set of dynamical mean field equations that describe the time evolution of the energy and
of correlation functions during the gradient descent dynamics. While the equations cannot
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be solved analytically, a long-time asymptotic solution has been explicitly constructed [9].
This solution shows that, if the initial state is prepared at high enough temperature T0 > Td,
then the energy asymptotically reaches the threshold with a non-trivial power-law behavior,
e(t) ∼ eth + At−2/3, irrespectively of the initial state; indeed, memory of the initial state
is completely lost during the dynamics. The fact that the dynamics keeps “surfing” on the
threshold, wandering around marginally stable states, is a very remarkable outcome of the
asymptotic solution [9]. On the contrary, if the initial state is deep enough, T0 < Td, then it
is already confined in the basin of attraction of a close-by minimum, to which the dynamics
converges exponentially, e(t) ∼ e∞(T0) + Be−t/τ . The final energy e∞(T0) depends on the
initial state and can be calculated by a simple thermodynamic construction [10]. Since its
discovery, this scenario has become a paradigm for disordered systems with rough energy
functions (Fig. 2).
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Figure 3: In the mixed p-spin energy
function, saddles (minima) dominate
above (below) the threshold, but rare
saddles also exist below eth, giving
rise to a new, intermediate dynam-
ical regime.

The work of Folena et al. adds a new impor-
tant ingredient to this paradigm. Inspired by previ-
ous work that detected some anomalies in its energy
function [11], they investigated a small variation of
Eq. (2), a mixed p-spin model, in which the Hamil-
tonian contains both 3-spin and 4-spin interactions.
With this simple modification, the relation µ = −pe
does not hold anymore, and the Lagrange multiplier
is now independent of the energy. The Hessian still
has a Wigner semicircle density, but the lower edge λ−
is now independent of the energy. Hence, marginally
stable states can now, in principle, exist at any level
of energy.

Next, Folena et al. solved numerically the dynami-
cal mean field equation of the mixed p-spin model and
found three distinct dynamical regimes. (i) For high
T0 > Tonset, the dynamics is memoryless and reaches a
threshold level eth, which is again a topological prop-
erty of the energy function: at e = eth, most of the
stationary points are marginally stable, with λ− = 0.
This memoryless dynamics is described by the same
asymptotic solution as for the pure model [9]. (ii) For T0 < TSF, the dynamics quickly
reaches a minimum close enough to the initial state, as in the low-temperature behavior of
the pure model [10]. (iii) A completely new regime is found for intermediate T0 ∈ [TSF, Tonset]:
the dynamics asymptotically still wanders around marginally stable states, but at energy
e∞(T0) < eth where such marginal states are exponentially rare. Furthermore, memory of
the initial condition is not lost, as manifested by the T0-dependence of the final energy.
While, as in the pure model, the first two regimes can be described solely in terms of prop-
erties of the energy function H[w], without any reference to the details of the dynamical
evolution, the third regime is new, qualitatively different and poorly understood (hic sunt
leones, in the authors’ words). The final energy, and the properties of the final states, depend
on the details of the dynamics, and for the moment no simple asymptotic solution has been
found to describe the long time behavior.
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The new dynamical regime is certainly relevant for the study of glasses. In these materials,
the existence of a regime in which the final energy depends on the initial temperature is
well established numerically [2], but no microscopic theory was able to describe it. A more
systematic comparison between mean field results and numerical simulations of realistic glass
models will certainly shed additional light on the properties of glassy dynamics in this new
regime. This new dynamical regime could also play an important role in many situations,
from optimization to evolution and machine learning.
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