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Anderson localization in a random potential is very much a 20th century topic, and one
would not expect the 21st century to bring conceptually new insights. But that is what the
paper by Arnold et al. offers, developing the concept of a “localization landscape” pioneered
by Filoche and Mayboroda (PNAS, 2012).

While the concept is far-reaching, it can be introduced in a few lines of basic math. Any
eigenfunction ψ at eigenvalue E > 0 of an invertible Hermitian operator H satisfies the
inequality

|ψ(r)| ≤ E|ψ|maxu(r), with u(r) =

∫
|H−1(r, r′)| dr′, (1)

which follows from ψ = EH−1ψ and |ψ(r)| ≤ |ψ|max. IfH = − ~2
2m
∇2+V is the single-electron

Hamiltonian in a potential V (r) > 0, the Green’s function H−1(r, r′) > 0 is positive1 and
the absolute value signs in the definition of u can be omitted. This function can then be
obtained from a single differential equation,[

− ~2

2m
∇2 + V (r)

]
u(r) = 1, (2)

without having to calculate the full Green’s function. The spatial dependence of u is referred
to as the localization landscape.2

The localization landscape u(r) is fully determined by the potential landscape V (r), but
in a highly convoluted way — which is why it is referred to as a “hidden landscape”. Figure
1 illustrates this for a one-dimensional random potential. The spatial location of the lowest
eigenstates lines up with the highest peaks of the localization landscape (right panel), but the
correlation with the potential landscape (left panel) is much less evident. This is the essence
of quantum localization, which is due to the destructive interference of multiply scattered
waves rather than to the confinement by potential barriers.

1This follows from the maximum principle for elliptic operators. Note that we need pointwise positivity
of H−1(r, r′), positivity of the eigenvalues of H−1 is not sufficient.

2This terminology is due to Filoche and Mayboroda (PNAS, 2012). The function u for V = 0 is called
the torsion function in elasticity theory (arXiv:1510.06353), where it plays a role in shape optimization
problems. In that context localization by tunnel barriers is called “weak localization” — which explains the
puzzling title of their 2012 paper.
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Fig. 1. The potential function V (x) in the left panel gives rise to the landscape function
u(x) plotted in blue in the right panel. The first four eigenfunctions are also plotted, scaled
so that their maximum value is the reciprocal of their eigenvalue — to demonstrate the
inequality |ψ| ≤ u when E|ψ|max = 1. The pseudopotential W is the reciprocal of u. [Figure
from Arnold et al. (2019).]

The reciprocal W = 1/u has the dimension of a potential energy, it is a smoothed version
of the original potential V — one might call W a pseudopotential.3 The smoothing produces
local minima separated by extended barriers. In an earlier paper (PRL, 2016) Arnold et al.
showed that a wave function at energy E decays exponentially into the barrier regions where
W (r) > E. This is a nontrivial result, because the inequality

|ψ(r)| ≤ E

W (r)
|ψ|max (3)

would have also allowed a slow decay. In a sense the transformation from V to W transforms
quantum localization into a classical localization problem with the same electron density
profile.

The 2019 paper extends the correspondence from eigenfunctions to eigenvalues: Each
local minimum Wmin of the pseudopotential corresponds to a localized eigenstate at energy
E ≈ cWmin for some constant c of order unity. This is again nontrivial, because the inequality
(3) would only imply E ≥ Wmin — rather than a correspondence for a range of eigenvalues
with a single coefficient c. The coefficient does depend on the spatial dimensionality d. There
is no precise calculation of c, but a qualitative estimate of the lowest eigenvalue in a potential
well of W (r) gives c ≈ 1 + d/4. Figure 2 shows how accurately the correspondence

E = (1 + d/4)Wmin (4)

works out, for d = 1 and d = 2.
To appreciate how astonishing this is, imagine someone telling you of a new method to

find the eigenvalues of a large random matrix: “I invert the matrix, sum the rows to obtain
a column vector, and then search for local minima in its reciprocal elements.” This sounds
like a crazy method, but Figure 2 shows it works for localized eigenstates.

3Chandra Varma reminded me of the pseudopotential method in band structure calculations, where it
refers to a smoothing of the ionic potential.

2

https://doi.org/10.1103/PhysRevLett.116.056602


Fig. 2. The 1st, 10th, and 25th eigenvalues versus the corresponding minima Wmin of the
pseudopotential, for 64 realizations of a random potential. The left panel is for dimensionality
d = 1, the right panel for d = 2. The solid line is the prediction from Eq. (4). [Figure from
Arnold et al. (2019).]

An analytical, rather than numerical, justification is based on the transformation of
the original Hamiltonian H = − ~2

2m
∇2 + V into a new operator H̃ = − ~2

2m
L + W having

the same eigenvalues, with eigenfunctions related by ψ̃ = Wψ. The differential operator
L = W 2∇W−2∇ is more complicated than the original Laplacian, but Arnold et al. are able
to employ existing methods for elliptic operators (notably the notion of Agmon distance4) to
show that eigenstates of H̃ decay exponentially into regions where W > E. The eigenvalue
relation (4) is on less rigorous footing.

A practical merit of the new approach to wave localization is the reduction in compu-
tational complexity. The localization landscape u(r) is a smooth solution of the elliptic
partial differential equation (2), which can be obtained in a time that scales linearly with
the system size L. Efficient eigenvalue solvers scale at least ∝ L2. An application to the
study of localized vibrations in enzymes which appeared recently (arXiv:1902.09939) reports
a 50-fold reduction in computational time compared to conventional methods. Because the
mapping from V to u is easy to calculate it might be feasible to engineer localized waves
at specific locations by inversion of the mapping, starting from a pseudopotential W = 1/u
with deep valleys at the desired locations.

The conceptual merit of the approach is still very much open-ended. Might it be pos-
sible to describe the Anderson metal-insulator transition by a percolation transition in the
localization landscape? Is the fractal character of wave functions at the Anderson transition
reflected in the spatial statistics of the pseudopotential?

All of this is single-electron physics, but Anderson localization plays a role as well in
interacting systems. In a very recent development, Balasubramanian, Liao, and Galitski
(arXiv:1908.05283) have applied the notion of a localization landscape to the many-particle
Fock space. The many-body localization landscape is defined for a wide class of interacting
Hamiltonians on a graph whose nodes represent the Fock states, while the edges give tran-

4The Agmon distance dA is computed like an optical path length for a refractive index n(r) =√
max(0,W (r)/E − 1). The decay of an eigenstate at energy E is bounded by e−dA

√
2mE/~2

.
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sitions due to the creation or annihilation of particle-hole excitations. Also in that context,
the original problem of localization by quantum interference is mapped onto localization by
tunnel barriers. We can expect to see more applications of this revolutionary idea.

I have benefited from interactions with Victor Galitski on MathOverflow.
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