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The concept of entropy in equilibrium systems has been a part of the standard undergraduate physics
curriculum for many decades. As such, one would expect that the basic idea is by now well-established, and
unlikely to be revised by the latest advances at the frontiers of science. Unfortunately, this is not true for
entropy, when we try to extend the idea to non- equilibrium systems.

For equilibrium systems, there are two well-known definitions of entropy, one due to Boltzmann, and the
other due to Gibbs. According to the Boltzmann definition, for an isolated system in equilibrium, for a state
Γ of the system, with total energy between EΓ and EΓ + ∆E, with δE � EΓ, we associate an entropy

SB(Γ) = kB log Ω(EΓ), (1)

where Ω(EΓ) is the volume of phase space corresponding to energy lying in the interval (EΓ, EΓ + δE), with
δE � EΓ. The Gibbs definition is defined in terms of the probability density of the representative point
Γ in the phase space. If the system is in thermal equilibrium, say in the canonical ensemble, there is an
associated probability density ρ(Γ) that the phase point Γ characterizing the system occurs within a small
volume dΓ of this point. For an ensemble defined by this density, the Gibbs entropy is defined as

SG = −kB
∫
dΓρ(Γ) log ρ(Γ), (2)

where the integral is over 2N -dimensional phase space, where N is the number of degrees of freedom of the
system. For systems in equilibrium, these definitions can be proved to be equivalent (to leading order in the
volume of the system).

In the case of quantum statistical mechanics, for systems in equilibrium, in the microcanonical ensemble,
the Boltzmann definition becomes

SeqB,qm = kB log Ωqm(EΓ), (3)

where Ωqm(EΓ) is the number of eigenstates of the Hamiltonian in the energy interval (EΓ, EΓ + δE). The
quantity corresponding to the Gibbs definition is the von Neumann entropy,

SvN = −kBTrρ̂ log ρ̂, (4)

where ρ̂ is the density matrix of the system.
There is another function, that looks similar, and is sometimes discussed in the context of the Second

Law. It is the Boltzmann H-function, defined in terms of the 1-particle density function ρ1(~r, ~p), which gives
the number density of particles having positions in a small volume near ~r, with momentum in a small range
near ~p. Then one defines, with (~r, ~p) ≡ Γ(1),

F = kB

∫
dΓ(1)ρ1(Γ(1)) log ρ1(Γ(1)) (5)

Boltzmann showed that, under the hypothesis of stosszahlansatz, this function decreases monotonically with
time. However, this function cannot be identified with the negative of thermodynamic entropy, as it takes
same value for different classical non-ideal gases in equilibrium, having same temperature, density, and mass
per molecule, independent of the interaction potentials.

Can one extend the notion of entropy to non-equilibrium systems? While some physicists think that
we do not need to do this at all, let me note that in the usual formulations of the Second Law in classical
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Figure 1: A schematic partition of the constant-energy shell of phase space into macro sets ΓV , with the
thermal equilibrium set taking up most of the volume (not drawn to scale).[from Goldstein et al., Annalen
der Physik (2017) 529: 1600301]

thermodynamics (say, “the entropy of an isolated system never decreases”), there is no qualification that
one is only dealing with systems with initial and final states in equilibrium. It would restrict the regime
of validity of the Second Law enormously, if it only applies when one equilibrium state goes to another
equilibrium state. It is desirable to try to extend the notion of entropy to non-equilibrium systems, in a way
such that the Second Law continues to be valid.

In this paper, the authors discuss the Boltzmann and Gibbs definitions of entropy, and show that if we
want to define the notion of non-equilibrium entropy, an extension of the Boltzmann definition is a good
candidate, but a similar extension of the Gibbs definition does not work, and SG and SvN cannot be taken
as the definition of thermodynamic entropy of non-equilibrium systems. Of course, this is not the first
time this issue is being discussed. The authors discuss critically earlier approaches. They show that the
Boltzmann definition, suitably refined/reinterpreted works, and “von Neumann, Khinchin and Jaynes were
all mistaken” (this is a direct quote from the article). If this claim is correct, the way we teach entropy at
the undergraduate level has to undergo some revision. I have found the arguments of the authors convincing,
and hence bring this paper to the attention of our readers.

The first problem with the SG, or SvN , is that for an isolated system, undergoing evolution under a
time independent Hamiltonian, these do not change in time. However, one can easily imagine systems, like
a container with two compartment, with a gas from one compartment expanding into the second, initially
empty, compartment. For this system, a reasonable definition of entropy should find that as the gas expands,
the non-equilibrium entropy increases with time. This clearly does not happen wih SG, or SvN . This difficulty
can be overcome by working with a coarse-grained density function ρ̃(Γ), instead of ρ(Γ). But note that this
does involve changing Eqs. (2) and (4).

The authors note that there is a more philosophic, and perhaps more basic, problem with defining entropy
using the approach of Gibbs or von Neumann. By this definition, the entropy is defined for an an ensemble,
but not for a single realization. But in classical thermodynamics, entropy is a physical quantity, and ‘state
function’, and should be well-defined for each realization of the system, not only for an ensemble of similarly
prepared systems. In the words of Goldstein et al, “while every classical system has a definite phase point X
(even if we observers do not know it), a system does not ‘have a ρ’; that is, it is not clear which distribution
ρ to use.”

The Goldstein et al solution for this is to assign to each individual phase point Γ a number equal log Ω(Γ),
where Ω(Γ) is the volume of points in phase space that “macroscopically look the same”.

SB(Γ) = log Ω(Γ) (6)

The detailed definition of what is macroscopically same makes this somewhat subjective. For example, for a
turbulent gas in a box, different microstates described by the same continuum hydrodynamical description,
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i.e. same coarse-grained density, velocity and temperature fields, may be treated as looking the same. Then,
the constant energy surface is divided into many disjoint sets [Fig.1]. These disjoint sets correspond to
macroscopically distinguishable states, and would have very different volumes, corresponding to possibly
different entropy densities. In a typical evolution, the representative point moves from a lower volume set
to a higher volume set, which is consistent with the Second Law of Thermodyamics. Rare, short-lived
fluctuations may take one from a larger set to a smaller set, which are well understood deviations, allowed
within the Second Law, and do not signal its breakdown.

For the quantum -mechanical case, they construct the quantum-Boltzmann entropy operator ŜqB , whose
expectation in any state gives the entropy of that state. The Hilbert space of all states is written as
a direct sum of subspaces, where all basis vectors in the subspace are macroscopically similar, and the
entropy operator in each subspace is a diagonal operator, equal to Identity matrix times the logarithm of
the dimension of the subspace. Then, the quantum entropy operator ŜqB is defined as

ŜqB = kB
∑
α

P̂α log Ωα, (7)

where P̂ is the projection operator to subspace α, and Ωα is the dimension of the subspace α, and the sum is
over all different subspaces α. Note that there is no trace in the equation. For the microcanonical ensemble,
the expectation value of this would agree with the Boltzmann definition.

Another problem with the ensemble interpretation that the authors point out is this: Consider a prepa-
ration protocol, in which with probability 1/2, one turns on a heater to heat a sample, and with probability
1/2, the heater is not turned on. Then, it makes sense to say that with probability 1/2, the system will be
in a high entropy state, say entropy S1, and else in a lower entropy state with entropy S2. The formalism
for the calculation of entropy should be able to reflect this. But, in the ensemble description, the state is
characterized by a phase space density (or density matrix), that is the arithmatic average of the density
functions corresponding to the two states. The calculated entropy will only give a single value S3, which is
only a bit more than the average entropy (S1 + S2)/2. But S3 is only the average entropy, it is never the
observed value of the entropy of the system: it is either S1, or S2. It is not clear how one can describe such
situations within the Gibbs prescription.

A part of the discussion in the paper is about entropy in the Bohmian version of quantum mechanics, a
version that the authors feel partial to. Even for readers not so fond of Bohmian quantum mechanics, the
article gives adequate food for thought.
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