
Journal Club for Condensed Matter Physics
https://www.condmatjclub.org

DOI:10.36471/JCCM November 2019 01

Is the many body localization transition
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The wide interest in the many-body localization (MBL) phase transition stems, to a large
extent, from the fact that it presents a sharp boundary between quantum and classical
behavior of macroscopic matter. While in a thermalizing state quantum correlations are
rapidly washed out by the dynamics, giving way to classical hydrodynamics at long times,
in the MBL state such correlations can persist indefinitely and crucially contribute to the
dynamics. The papers I recommend highlight the unconventional nature of this transition
and offer some insight as to why it has so far resisted a reliable characterization using
numerical simulation or experiments. Paper (1) above attempts to challenge our current
understanding of the many-body localization transition. Papers (2) and (3) respond to this
challenge and, in doing so, highlight potential obstructions to observing the transition using
conventional numerical approaches and possibly also near term experiments.

In the last decade there has been significant progress in understanding many-body lo-
calization.There are good theoretical arguments suggesting that the stability of the local-
ized phase is ensured, in a sufficiently disordered one-dimensional system, due to vanishing
probability for formation of a resonant cluster that spans the entire system. Within this
picture, the transition to a thermalizing phase occurs at a finite disorder strength, through
an avalanche process triggered by an extremely dilute set of microscopic sites. Thus, the
critical point exhibits insulating-like behavior with thermalization times that are exponen-
tially long with the system length L. On approaching the transition from the thermal side,
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the system appears insulating on short length scales, below the diverging correlation length
ξ. At longer scales the system is expected to show sub-diffusive transport: a system of length
L thermalizes at a time τth ∼ Lz, with z > 2. Moreover, the dynamical exponent z changes
continuously and diverges at the MBL critical point, leading to extreme slowing down of the
dynamics even before the transition has been reached. The phase transition in the dynamics
is also accompanied by a fundamental change of the many-body spectrum. In the localized
phase the spectrum is expected to show Poisson statistics, while in the thermalizing phase
the energy levels should show strong repulsive correlations at energy differences smaller than
the Thouless energy, or inverse thermalization time (ET = ~/τth).

Paper (1) presents a challenge to this picture through analysis of the many-body energy
level correlations. First, from the spectral form factor (SFF), a generating function for the
energy level correlations, the authors extract a global thermalization time (inverse of the
Thouless energy). The thermalization time can be reliably extracted in this scheme for
moderate disorder W deep in the thermal phase, where the authors fit it to the scaling
form τth ∼ eW/W0L2. If this scaling persisted to strong disorder, it would imply that the
thermalization time reaches a scale exponentially long with L, as it must be in the MBL
phase, only at a critical disorder strength Wc ∼ L. In other words, the localization transition
would occur only at extensive, rather than finite disorder strength. It is worth noting, that
the fitted scaling form is diffusive (z = 2), which is probably consistent with the fact that
the analysis can only be carried out deep in the thermal phase. It would still be interesting
to see if the data is consistent with an alternative scaling ansatz in which the dynamical
exponent z increases continuously with W . Either way, paper (1) presents another piece of
evidence for extensive Wc using a more conventional diagnostic of localization: the ratio of
adjacent level spacings r. r is known to take one value for Poisson levels and a different value
in case of Wigner-Dyson statistics. Calculating r for different disorder strengths and system
sizes, the authors show that a good crossing point, indicating a localization transition, is
obtained only if r is plotted against the disorder strength scaled as W/L.

Do these numerical results challenge the existence of MBL? The authors of paper (2) argue
they do not. They caution against extrapolating the scaling behavior of the thermalization
time, as seen deep in the thermal phase, all the way to the transition and point to adverse
finite size effects that plague numerical studies of localization transitions more generally.
Perhaps the most striking analysis they present is a comparison between the results of paper
(1) and those they obtain for the model of a single particle on the random regular graph
(RRG). The existence of a localization transition had been rigorously established in the
latter, yet analysis of the r ratio in systems of moderate size leads to exactly the behavior
found in paper (1): a crossing point at a fixed value of W/L. Thus with a naive analysis
of the RRG model one would also deduce absence of Anderson localization. The question
remains though, what is the origin of the strong finite size effects plaguing the many-body
localization transition. One intriguing result of paper (3) may offer a clue.

Part of paper (3) is devoted to a careful study of the global and local relaxation time
of a system initialized with a domain wall in the spin profile. The local relaxation time
t1 is defined as the time to transfer a single spin across the domain wall and a global
relaxation time tN is the time for transferring N ∼ O(L) spins. The authors of paper

(3) find t1 ≈ eW/W̃ and tN ≈ t1(W )N z. There are two important points to note. First is
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that a sub-diffusive scaling is observed with dynamical exponent z > 2 and clearly growing
with disorder strength in accordance with current understanding of the transition. However,
the crucial second observation is that in the accessible small system sizes the relaxation time
reaches the Heisenberg time tH ∼ 2L/(WL), set by inverse level spacing because of the rapid
growth of the local relaxation time, well before the dynamical exponent z had a chance
to diverge. The conclusion of this paper is that current exact diagonalization studies are
observing a spurious crossover from Wigner-Dyson to Poisson statistics driven by slowing
down of the local dynamics. They estimate that the true MBL transition, driven by the
global slowing down due to diverging dynamical exponent, would be observable only for
system sizes of order L & 50.

The recommended studies point to the difficulties associated with studying the many-
body localization transition using conventional numerical approaches limited to small sizes
or experiments limited by time. A natural way to detect the sub-diffusive behavior in
experiment is to impose some non-equilibrium profile, such as a density wave, and fit the
relaxation of the wave amplitude to a power law ∼ (t/t1)

−1/z. Such a fit becomes unreliable
for z & 5 when the experiment is limited to reasonable timescales, due to inevitable decay
processes or coupling to the environment making difficult to approach the phase transition
at which z diverges. Paper (3) adds another layer of difficulty by pointing to the rapidly

growing local timescale t1 ≈ eW/W̃ . To make progress in addressing the MBL transition with
controlled numerical calculations it would be important to understand this growth of the
local time scales. It stands to reason that this is an essential consequence of the asymmetry
between thermalization and localization. Very few thermalizing seeds can destabilize the
localized phase, yet a few localized islands are not effective in localizing the bulk. For this
reason the true MBL transition occurs at rather large disorder strength that is sufficient to
slow the local dynamics appreciably. It remains to be seen if this effect can be mitigated in
specially constructed models of MBL.
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