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Orientational order in liquid crystalline states is inherently malleable, which leads to the
outstanding variety of textures, or spatial patterns of orientation, they display. Central to
the understanding of liquid crystals for decades is the Oseen-Frank (OF) elastic theory that
describes their free energy in terms of orientational gradients. A recent series of papers
shows that an alternative approach for decomposing of gradient patterns greatly simplifies
the classification of liquid crystalline textures.

In the standard OF formulation, the free energy density for distortion the director, n(x),
from its uniform ground state describes all possible square gradients (i.e. second order in
first derivatives of n) consistent with nematic symmetry [1]:
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The first term of Eq. (1) describes the cost of splayed configurations, which can be measured
by scalar S ≡ ∇ · n. The second penalizes twisted textures, where the director locally winds
around some direction perpendicular (e.g. as in the uniaxial cholesteric texture), and is
measured by a pseudo-scalar T ≡ n · (∇ × n). The third term describes bending and is
measured by the vector B = −(n · ∇)n (equal to the curvature times the normal to the
field lines of n). The final term is less widely known, and differs from the first 3 in that it
is not positive definite. This “K24 term” is called the saddle-splay because, when n can be
associated with the normal to a surface, the term is equal to its Gaussian curvature and is
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negative for saddle-shaped surfaces (i.e. favorable when K24 > 0). Because the K24-term
is a total divergence, it can be integrated to the boundary of the sample, and therefore is
neglected in the vast majority of applications of the OF energy, where anchoring conditions
fix n(x) at the boundary.

The free energy for material that realizes nematic symmetry includes only these square
gradient terms ∗, distinguished by the values of Frank constants K11, K22, K33 and K24.
Notwithstanding its breadth, the formulation of Eq. (1) introduces some ambiguity about
the status of saddle-splay as a boundary term vs. the “primary” bulk terms, splay, twist
and bend. Indeed, there are prominent scenarios in which free boundaries become abundant,
particularly where molecular geometry and interactions favor non-zero gradients everywhere.
For example, in the liquid crystal blue phases [2], “doubly-twisted” director gradients (col-
umn 2 of Fig. 1) are preferred due to a linear term in T allowed for chiral molecules, but
geometric compatibility enforces extensive disclinations arrays to thread through the bulk
between local double-twist domains. In such cases, the contribution from the K24-term at
the defect cores is essential. Moreover, some textures have non-zero “saddle-splay energy”,
but have nothing to do with surfaces, saddles or otherwise. For example, there is no sur-
face whose normal follows the “double-twist” texture favored in blue phases (Fig. 1), yet
∇ ·
[
(n · ∇)n− n(∇ · n)

]
6= 0 for that texture.

An alternative decomposition of gradient textures put forward by Machon and Alexander
(MA) provides a means of resolving and reinterpreting these arguably unsavory aspects of the
OF description. At the heart of the study of MA is a different, but related, question about
complex field configurations that are topologically nontrivial, but nonsingular in terms of
director pattern. Examples include skyrmion textures in 2D or so-called Hopfions in 3D [3, 4],
where the director is everywhere smooth, yet the field configuration is topologically wound up
in such a way that it can’t be smoothly distorted back to a uniform one. For textures that
are topologically non-trivial but smooth, where exactly does that topological information
reside? To answer this, MA show that the gradient tensor of first derivatives ∇n (from
which FOF is constructed) can be broken into 4 distinct and irreducible “elements”. The
first 3 are associated with the splay, twist and bend.

To understand the fourth “element”, which I simply call “∆”, first consider the gradient
tensor where the derivative along n, i.e. bend, has been subtracted off, ∇⊥n ≡ ∇n − nB.
The tensor ∇⊥n only has non-zero components in the plane perpendicular to the director. It
can then be represented by the 2 × 2 matrix of first derivatives of n in this perpendicular
plane. The matrix can split up into 3 irreducible pieces. The first two of these – its trace
and skew symmetric elements – simply correspond to S and T , respectively. Subtracting off
the “tracefull” and antisymmetric parts of ∇⊥n then gives a symmetric, traceless (rank 2)
matrix; this is ∆. Represented as a matrix the 2D plane perpendicular to n

∇⊥n =
S

2

(
1 0
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+

(
∆1 ∆2
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)
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As a symmetric and traceless matrix, ∆ can be characterized by the equal and opposite
eigenvalues and eigendirections in the plane. Fig. 1(fourth column) shows a “pure ∆” texture
(i.e. S = T = |B| = 0): along one of the eigendirection, the director splays outward, while
in the orthogonal direction is splayed inward by an equal amount.

∗That is, neglecting terms that are second-order (or higher) in derivatives of n.
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Figure 1: A schematic table showing how derivative operators
“measure” gradients of n for different characteristic textures.
The 4×4 block highlights the irreducible decomposition of MA.
The last row illustrates that the “K24 -term” as a mixture of
3 “pure” modes, while the last two columns illustrate “single”
splay and twist to pure “double” modes. Figures are adapted
from Selinger (2019).

What can be gained
from extracting the ∆ mode?
For one, MA show that the
topological structure of non-
singular configurations are
generically characterized by
what they call “umbillic
lines” in the field, places
where ∆ = 0 and in the
plane perpendicular to n,
the gradient texture is (lo-
cally) isotropic. Like the
umbillic points of surfaces
(degeneracies in the princi-
ples curvatures), umbillics
in nematics or vector fields
can be characterized by the
winding of the eigendirec-
tions around them, leading
to a rich and natural frame-

work to unify classification of a number of topologically complex and smooth textures as
they describe in detail.

In a second paper, Selinger builds on this decomposition to recast the energetics of
nematic elasticity, in a surprisingly simpler light. Notably, the four modes – splay, twist,
bend and ∆ – are “normal” in the sense that tensor multiplication of unlike components
∇n is zero. On these grounds, Selinger argues that breaking gradients up into these four
irreducible elements provides a more natural description of the characteristic “modes”. The
free energy, eq. (1), can be rewritten,

FOF =
1

2

[
KSS

2 + KTT
2 + KB|B|2 + K∆|∆|2

]
, (3)

where KS = K11 − K24, KT = K22 − K24, KB = K33 and K∆ = 2K24. In this way, the
standard K24 gets split up into it constituent elements of splay, twist and ∆ – what Selinger
calls biaxial splay – and in so doing, converts the free energy density into the sum of the
squares of these four bulk “modes”. As shown in the schematic table of Fig. 1, this not only
reinterprets saddle-splay in terms of biaxial splay + splay + twist, but it also reinterprets
the notion of what is “pure twist” and “pure splay” as local configurations which are strictly
uniaxial in the plane perpendicular to n (and therefore have only T or S nonzero among
the 4 modes). Hence, the canonical twisted texture, the cholesteric (e.g. with n winding a
single fixed axis), is in fact a mixture of pure (double) twist and biaxial splay. Beyond its
algebraic elegance, Selinger argues that this decomposition demystifies some implications of
the K24 – specifically the stability of the blue phase as well as the spontaneous chirality for
large K24 – in terms this of purely bulk elastic theory.

Maybe even more compelling is that this geometric decomposition of orientation gradients
resets the framework to consider long-standing puzzles about the compatibility of Euclidean
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space with director patterns that favor uniform gradients. The classic example of this is
indeed the chiral phases that due to the “screwy” symmetries of their molecular constituents
favor everywhere S = |B| = |∆| = 0 but also constant twist, T = T0 6= 0. Because
uniform, pure double twist is frustrated (in flat space) [2], constant T is only possible along
1D curves, and extending this texture to a “thicker” tubular region necessarily introduces
other components (e.g bend). A third paper by Virga takes up this thread to answer the
question, what are the possible textures in (flat) 3D space that allow uniform gradients (i.e.
with splay, twist, bent and biaxial splay realizing uniform magnitudes)? The answer to this
question is exactly one and only class of textures, known as the heliconical textures, which
are splay free, but have constant, twist, bend and Delta. Heliconical textures are realized
by tipping the directors of a cholesteric up along the its pitch axis by a constant angle.
Meyer conjectured them long ago to be the optimal solution for the director field that favors
constant bend but zero twist and splay [6], and more recently, they have been the subject of
intense experimental interest in the context of bent-core mesogens [7].

The fact the only strict set of uniform gradient textures is possible is certainly a useful step
in classifying the set of possible phases that could be exhibited by molecules of more complex
shape preferences (e.g. a “target texture” favoring constant ∆ 6= 0, but zero twist, bend
and splay). But, in my view, this perspective largely sharpens what we don’t know. Given
that few possibilities exist for textures that satisfy strict conditions of “uniformity”, what
are the broader possibilities (beyond blue phases) for non-uniform energy density textures
that can outcompete the uniform heliconical textures as energy minimizers for a given target
texture? An alternative perspective might ask [8], if you can “bend the rules” of Euclidean
spaces, which spatial curvatures are compatible with much broader (non-heliconical) class of
uniform textures, and what can be learned by trying drag these rarified textures back down
to the lowly flat 3D Euclidean space liquid crystals are force to live with?
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