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Random walks find applications in all areas of the natural sciences. First developed
to describe Brownian motion and test the foundations of statistical physics [1], random
walks are now used to model financial markets [2], organized sports [5], crackling noise [3],
tissue morphogenesis [4] and a myriad of other phenomena. Often, one has to consider
not only regular diffusion, but also rare events such as stock market crashes that push the
system into a different state. While the general theory of such jump-diffusion processes has
been developed, there are still many subtleties and open questions in applying this theory
to concrete physical phenomena. The featured paper reports remarkable progress in the
mathematical description of genetic diversity in situations when the effective number of
offspring has a fat tail.

The most widely-used model in population genetics is the Wright-Fisher model. It de-
scribes how the relative abundances of genotypes change over time. For simplicity, let us
consider just two genotypes: the mutant with relative abundance f and fitness wm and
the ancestral type with relative abundance 1 − f and fitness wa. The model posits that
each out of N individuals in the population makes a large number of offspring. Specifically,
each mutant organisms makes wmW offspring and each ancestral type makes waW offspring,
where W � 1. The final step consists of randomly sampling N survivors that constitute the
next generation. Under these assumptions, the following Fokker-Planck equation describes
the temporal evolution of the probability P (t, f) that the mutant has relative abundance f
at time t:

∂

∂t
P (t, f) = −s ∂

∂f
[f(1− f)P (t, f)] +

1

2N

∂2

∂f 2
[f(1− f)P (t, f)], (1)

where we assumed N � 1 and wm = wa(1 + s) with selective advantage s � 1. The
advection term describes natural selection and the diffusion term describes genetic drift, i.e.
changes in f due to the stochasticity of births and deaths. Equation (1) and its extensions
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describe the emergence of spread of new mutations and ultimately underline most inferences
from genetic data.

The Wright-Fisher model as defined above does not capture the reproduction cycle of
most organisms. Yet, numerous studies in population genetics have confirmed that more
realistic demographic models reduce to Eq. (1) provided s and N are appropriately defined.
This universality is completely analogous to regular random walks whose long-time behav-
ior is completely captured by a single diffusion constant despite potentially complicated
microscopic dynamics.

Despite the above-mentioned universality, genetic diversity in several populations was
found to be inconsistent with the predictions of the Wright-Fisher model [6, 7]. In such
populations, the number (or effective number) of offspring W produced by a single individual
has a fat-tailed distribution P (W ) ∼ W−1−α. This unusual situation arises in some marine
animals that lay millions of eggs and in viruses that experience periods of exponential growth
separated by sever bottlenecks. Effects of exponential growth on the effective number of
descendants has been first studied by Luria and Delbruck [8], who found that P (W ) ∼ W−2

and both the first and the second moments of W diverge.
The featured paper by Oskar Hallatschek generalized the Wright-Fisher model to allow

each individual to have a random number of offspring with the Luria-Delbruck distribu-
tion (P (W ) ∼ W−2). The key result is that the relative abundance of the mutant obeys the
following master equation with drift:

∂
∂t
P (t, f) = − ∂

∂f
[sefff(1− f)P (t, f)] +

∫ 1

0
df̃ [T (f̃ → f)P (t, f̃)− P (t, f)T (f → f̃)], (2)

seff = s+ 1
lnN

ln f
1−f , (3)

T (f1 → f2) = 1
lnN

f1(1−f1)
(f1−f2)2

. (4)

Three things are worth noting. First, the diffusion term is replaced by discontinuous jumps.
Second, the new terms decrease with population size very slowly as 1/ lnN compared to
the 1/N scaling in Eq. (1). Third, there is non-zero advection that acts as natural selection
even when the mutant has no fitness advantage (s = 0). Thus, fluctuations are both stronger
and acquire non-trivial bias. Hallatschek also obtained the Green function for Eq. (4) in
terms of elementary functions, something that is not even possible for Eq. (1).

The origin of the “fictitious” selection lies in the fact that more abundant genotypes
are more likely to sample deeper into the tail of P (W ) and are, therefore, more likely to
benefit from larger “jackpot” reproduction events. As a result, the abundance of rare clones
typically decreases. This typical behavior is amended by rare jumps with the opposite bias,
which ensures that the relative abundance averaged over independent realizations does not
change when mutant has the same fitness as the ancestor (s = 0).

Fictitious selection has numerous biological implications. Specifically, it greatly reduces
the fixation probability of beneficial mutations and affects inference from time series data
on f(t). The technical advances in the featured paper are however likely to be of value
beyond population genetics. It is particularly interesting to see how the results generalize
for α 6= 1. When α ∈ (1, 2), the variance of P (W ) is infinite, and deviations from the Wright-
Fisher model, including fictitious selection, are expected. For α > 2, however, Eq. (1) should
hold.
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