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The concept of active matter describes systems of interacting objects that consume energy 
and transform it into movement [1,2]. This concept was originally developed to describe 
biological systems, such as flocks of birds or schools of fish, in which the individual animals 
interact with each other and develop collective patterns of motion. Over the past 10-20 years, it 
has been applied to a wide range of systems, including swarms of bacteria, growth of epithelial 
tissue, and nonbiological systems such as self-propelled colloidal particles. 

In many active systems, the interactions between particles lead to orientational order, 
analogous to the orientational order of a magnet or a liquid crystal. Often this order is nematic, 
which means that particles are oriented forward and backward along some axis, as in the most 
common liquid-crystal phase. However, unlike conventional nematic liquid crystals, active 
nematics do not relax to some equilibrium state that minimizes the free energy. Rather, they are 
continually in motion, swirling around, so that the material is flowing and the pattern of 
orientational order is changing. 

In any experiment on active matter, or in any simulation, many different dynamic processes 
are occurring at the same time. It is difficult to decide what to observe, or how to interpret the 
data. For that reason, it is important for researchers to develop some reduced description of what 
is happening within an active system, using a limited number of degrees of freedom. In that 
respect, the study of active matter is similar to the study of other many-body systems, in which 
physicists seek to identify quasiparticles as the fundamental excitations to be studied. 

So far, most studies have concentrated on two-dimensional (2D) active nematics. In these 2D 
systems, it is useful to study a class of topological point defects, known as disclinations, as the 
relevant quasiparticles. Disclinations have the structure shown in Fig. 1. Here, the gray double-
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headed arrows represent the local orientation of nematic 
order, called the director field n(x,y). This director is 
well-defined everywhere except at the two singular points, 
shown in black. The point on the right is a disclination of 
topological charge +1/2, because the director rotates 
halfway around a circle in a positive sense as one 
traverses the blue loop. Likewise, the point on the left is a 
disclination of topological charge −1/2, because the 
director rotates halfway around a circle in a negative 
sense around the blue loop. Note that the +1/2 
disclination is shaped like a comet, with a characteristic 
vector orientation represented by the green arrow, while 
the −1/2 has three-fold symmetry. 

While disclinations occur in both conventional and active nematic liquid crystals, their 
dynamic behavior is quite different in those systems. In conventional liquid crystals, 
disclinations of opposite charge attract each other and eventually annihilate, allowing the system 
to coarsen in time. By contrast, in active nematics, disclinations are continually in motion, with 
disclination pairs nucleating and annihilating. In particular, +1/2 disclinations induce a 
characteristic fluid flow pattern, which causes the disclinations to move along the direction 
indicated by the green arrow (either forward or backward along this arrow, depending on the 
type of material). Many studies have investigated this behavior through theory, simulations, and 
experiments. For example, one recent study has investigated how the Kosterlitz-Thouless 
disclination unbinding transition is modified by the presence of activity [3]. 

In the last two years, researchers have begun to study active nematics in 3D. At this point, the 
question is how to generalize the concept of disclinations as quasiparticles from 2D to 3D. 
Naively, we might expect to extend each type of disclination out of the plane, to form a 
disclination line in 3D. However, this generalization is not trivial, because 3D disclination lines 
have very different topological properties than 2D disclination points. When the nematic order is 
2D, there are distinct types of disclinations with any half-integer or integer charge. However, 
when the nematic order is 3D, it is possible to continuously transform a +1/2 into a −1/2 via twist 
of the director, and it is possible to continuously transform any integer disclination into a defect-
free state via escape into the third dimension. Hence, from a topological perspective, there is 
only one type of 3D disclination line. How can we understand the behavior of 3D active 
nematics in terms of this one type of disclination line? 

The first article discussed here, by Duclos et al., provides a combined experimental and 
theoretical study of that question [4]. On the experimental side, it investigates a 3D active 
nematic system based on microtubules driven by kinesin molecular motors, which the authors 
had previously studied in 2D. It uses a multiview light sheet microscope to image the system as a 
function of 3D position and time. Through a real tour de force of data analysis, the authors 
extract the director field n(x,y,z,t), and then identify the regions of high gradients |∇n|2, which are 
associated with disclinations. They find a network of 3D disclination lines, which spans the 
entire system, together with isolated disclination loops. These isolated loops nucleate and grow 
out of uniform regions, or contract and self-annihilate to leave uniform regions. Also, isolated 

Figure 1: Structure of a +1/2 disclination 
(right) and a −1/2 disclination (left) in a 
2D nematic. 
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loops merge with the larger network, or 
break off from the network when it self-
intersects. The experimental dynamics of 
the material can be regarded as the 
dynamics of the moving disclination loops.  

On the theoretical side, Duclos et al. 
provide a geometric method to 
characterize disclination loops. Geometry 
is more specific than topology; geometry 
can distinguish between objects that are 
topologically equivalent. Duclos et al. 
point out that the local structure of a 
disclination line can be characterized by 
two mutually perpendicular unit vectors: 
the direction Ω about which the director 
field rotates, and the orientation nout of the director just outside the loop. Based on the how these 
two vectors are oriented with respect to the local tangent to the loop, one can distinguish whether 
the local director has a +1/2 wedge (planar) structure, a twisted 3D structure, a −1/2 wedge 
structure, or something intermediate between these cases, as shown in Fig. 2. Moreover, based 
on how these vectors change around the entire length of the loop, one can characterize the 
topological properties of the whole loop. Certain types of loops have a higher-order topological 
charge, like a hedgehog in the director field, while other types of loops have no hedgehog charge. 
Only the loops without hedgehog charge are free to form and annihilate. Duclos et al. apply this 
geometric analysis to the loops observed in experiment and simulation, and show that they are 
consistent with this condition. 

The second article discussed here, by Binysh et al., investigates the dynamics associated with 
disclination loops in 3D active nematics [5]. This article begins by describing the geometry of a 
local segment of a disclination loop using the vector Ω and one other vector. It puts this 
geometry into the Stokes equation for fluid flow driven by active force, and calculates the self-
propelled velocity of this local segment. It then goes on to address the dynamic properties of the 
entire loop, and shows that activity might drive the loop to extend, or contract, or buckle into a 
nonplanar 3D shape. The type of behavior depends on the global geometry of the loop, as 
characterized by the global arrangement of Ω and the other vector. These predicted behaviors are 
consistent with analysis of simulations for an active nematic inside a spherical droplet. 

Overall, these articles demonstrate that disclination loops can be regarded as the fundamental 
excitations of the 3D active nematic liquid crystals. They are not exactly quasiparticles, but 
might be called quasi-polymers or quasi-strings. In some ways, they are analogous to a melted 
lattice of flux lines in a high-temperature superconductor [6]. We expect that future work may 
express other properties of 3D liquid crystals, either conventional or active, in terms of properties 
of disclination lines. For example, the elastic free energy of a 2D liquid crystal with point 
disclinations can be regarded as a Coulomb-like interaction between disclinations of the same or 
opposite topological charges. The elastic free energy of a 3D liquid crystal with one or more 
disclination lines might be analyzed in a similar way, as an interaction among line segments with 

Figure 2: Possible structures of a straight disclination 
line (A) or of a circular disclination loop (B, C) in a 3D 
nematic. From Ref. 4. 
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certain disclination geometries. This perspective should provide further opportunities to simplify 
the analysis of the complex physics within active matter. 
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