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Machine learning many-electron wave
functions via backflow transformations
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The goal of determining the electronic structure of molecules and materials by solving
the many-body Schrödinger equation has challenged theoretical physics and chemistry over
the last century and driven the development of powerful approximations and computational
methods. In the three papers above [1, 2, 3], the authors show how deep learning archi-
tectures can systematically improve many-body wave functions for Quantum Monte Carlo
calculations, and benchmark their accuracy on the Hubbard model [1], and for light atoms
and small molecules [2, 3]. Out of several recent approaches for machine learning quantum-
many-body wave functions, e.g. [4, 5, 6, 7], I have chosen these three papers biased by the
common underlying strategy taken there to explore, extend, and possibly exhaust existing
structures of many-body trial wave functions based on backflow transformations employing
neural networks.

The variational principle for the ground state energy, E0 ≤
∫
dRΨ∗

T (R)HΨT (R), pro-
vides a simple, but powerful tool to obtain upper bounds for the ground state energy, E0, of
any HamiltonianH. Combined with Monte Carlo methods to evaluate the highly dimensional
integral over all particle coordinates, variational and quantum Monte Carlo calculations have
provided most accurate values of the many-body Schrödinger equation [8, 9], only limited by
the quality of the underlying trial wave function, ΨT (R), for N fermions, R ≡ (r1, . . . , rN).
Can representations based on neural networks reduce this remaining bias similar successful
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as for discrete spin lattice systems [10], and efficiently capture the sign structure of fermions
as well as the continuous space description?

Requesting a manifest antisymmetric form essentially reduces the wave function to a
determinant (or pfaffian) as the only known antisymmetric form with affordable computa-
tional cost for medium/large number of fermions. This yields the so-called Slater-Jastrow
wave function ΨT ∼ detni φn(ri) exp[−U(R)], where the Slater determinant is usually build
out of orbitals φn(r) from independent particle/ self-consistent field type models and aug-
mented by a (real) symmetric correlation factor U(R). Eventually, the accuracy of quantum
Monte Carlo calculations is limited by the sign structure of the trial wave function, which,
within Slater-Jastrow, essentially reduces to that of an independent particle wave function.

How to improve the sign-structure of trial wave functions beyond Slater-Jastrow? In-
cluding linear superpositions of determinants, the ansatz eventually becomes exact, but the
number of determinants needed to significantly reduce the bias turns out to grow exponen-
tially in general [11]. Alternatively, backflow transformations from bare coordinates ri to
quasi-particle coordinates qi(R) = ri+

∑
j rijη(rij), symmetrically depending on the position

of all particles, can be used to modify the structure of the determinant detni φn(qi). Orig-
inally introduced by Feynman and Cohen [12] for the description of the excitation spectra
in liquid helium, Pandharipande and Itoh [13] showed that the backflow structure naturally
arises also in ground state wave functions from the momentum dependence of correlations.
Introduction of backflow wave functions in quantum Monte Carlo calculations in various
systems over the last decades [14, 15, 16, 17, 18, 19, 20] has systematically increased the
accuracy of a single determinant description. Iterative applications of backflow transfor-
mations [21], yielding a non-linear network [22], indicate one possible pathway for further
improvement of backflow functions.

In their paper [1], Di Luo and Bryan Clark have chosen a feed-forward neural network to
represent the backflow wave functions for the ground state wave function of lattice (Hubbard)
models, whereas David Pfau et al. [2] and Jan Hermann et al. [3] provide two different deep
neural network implementations of backflow transformations for real-space electronic wave
functions of first-row atoms and small molecules. Combined with machine learning algo-
rithms, they were able to optimize these highly flexible networks and benchmark the quality
obtained. The results presented in these papers show that neural network representations
of backflow transformations can improve Slater-Jastrow results by order of magnitudes close
to reaching chemical accuracy within a single determinant variational wave function.

The three articles [1, 2, 3] thus represent an important step forward towards fully ab-
initio electronic structure calculations where the precision of the results can be judged intrin-
sically, without making use to external (experimental) knowledge. Importantly, increasing
the number of neurons/layers combined with variance extrapolations can help to quantify
or even bound the residual bias. The variational description reached in these papers yields
high quality wave functions with unpreceeded flexibility for electronic structure calculations,
demonstrating once again the benefits from merging recent developments in the field of
machine learning with those of quantum many-body calculations.
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