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One of the goals of science is in detecting statistical dependencies in experimental observa-
tions, summarizing them, and using these summaries to extrapolate: from data, we want to
predict outcomes of new experiments, not yet done. Due to the “unreasonable effectiveness
of mathematics in natural sciences” [1], it seems that making such predictions quantitative
is the easiest if one summarizes the dependencies in terms of mathematical equations. If
those are applicable broadly, we call them “laws of nature”.

With the recent explosive growth in computing and artificial intelligence (AI) methods
– most visibly deep neural networks – a natural question is whether one can do a theorist’s
job of learning laws of nature on a computer automatically. This question has created
a lively field of automated symbolic inference – inferring mathematical equations (static
formulas, differential equations, partial differential equations, and so on) describing various
experimental data, or in silico data sets modeling real data. A few of the relevant references
are [2, 3, 4, 5].

The recent publication by Udrescu and Tegmark, the subject of this commentary, is a
new entry in the field. The authors compiled a set of physics formulas from the famous
Feynman’s Lectures and other classic physics textbooks. These equations relate various
physical quantities among themselves. The author then took different values of variables on
the right hand sides of the equations, calculated the left hand sides, and finally sprinkled
the calculated values with some noise, modeling experimental errors. Their goal then was to
reconstruct the original equations from such noisy ”experimental” data sets. For example,
knowing the force on a planet and its coordinates relative to the Sun, all recorded with
some experimental error, they aimed to reconstruct the iconic Newton’s law of Universal
Gravitation. Their approach, which they dubbed AI Feynman because of the textbooks
where the test equations were collected, proved to be much more accurate that competitors,
and it was able to reconstruct nearly all equations in their compiled set. The main reason
for their success was in effectively searching through the combinatorially large space of all
possible equations (which were represented as strings of operations connecting variables).
In its turn, this was achieved through incorporation of “physical intuition” into the search
procedure through a few relatively straightforward steps. First, the authors pointed out that
all physical variables have dimensions, and there is no point to search through equations
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that have dimensions mismatched. Second, they noticed that most equations in physics
involve low order polynomials of the constituent variables, are formed through addition
or multiplication of simple terms, incorporate relatively few elementary functions, and are
almost everywhere smooth. Thus the authors prioritized the search over the space of all
possible equations to first look at expressions that satisfy these biases.

However, the real golden nugget in AI Feynman was noticing that many physical laws
obey translational, rotational, or scaling symmetries, and then implementing an explicit
search for symmetry properties in the analyzed data before fitting them. To detect, say, a
translational symmetry in a relation y = f(x1, x2) = f(x1 − x2), one needs to notice that
every time the arguments x1 and x2 are incremented by the same a, the value of y doesn’t
change. However, in any finite size, real-valued dataset, the probability that there will be two
different pairs (x1, x2) with exactly the same difference x1−x2 is nearly zero. To circumvent
the problem, the authors relied on the power of machine learning. Feed-forward neural
networks – the most common modern machine learnign paradigm – are essentially universal
interpolators of smooth functions. From finite – though often quite large, ∼ 105 samples or
more – amounts data, the authors were able to train relatively standard neural networks to
produce approximators f̃ of the functions being sought, e.g., f(x1, x2) in our example, for
arbitrary inputs and to a very high accuracy. One then explicitly checks not if the function f
has a translational symmetry, but if its approximation does: does f̃(x1, x2) ≈ f̃(x1+a, x2+a)
for many different pairs (x1, x2)? If the equality holds within some accuracy ε, then one only
needs to search for translationally invariant functions f , which is a lot easier that searching
through all possible functions. The authors dealt with other traditional physical symmetries
very similarly.

AI Feynman is a very good illustration of how physical intuition – that is, knowing which
kind of laws we expect to find – can augment brute-force machine learning. One could hope
that, in the future, such combined approaches will not only detect known equations from
synthetic datasets, but also new physical laws from experimental data.

However, as every work on the frontier of knowledge, this one does not solve all problems,
and leaves a lot of question marks and some possibilities for improvement. For example, to
discover the iconic law of Universal Gravitation, the authors needed to assign to the Newton’s
constant G its correct dimensions. They also needed about 106 training samples to detect
the translational and the rotational symmetries in the law. In contrast, Newton did not
know the dimensionality of G and, in fact, had to introduce this constant, and he certainly
did not explicitly analyze a million data points to come up with his famous law. Another
concern is that the sensitivity of the current algorithm to the introduced “experimental”
noise is very high, so that the approach fails when the relative noise is often as low as 10−4

– something that only a few experiments can achieve.
It is also unclear whether the neural networks are an essential to detect symmetries

in data. Indeed, the authors do not actually use their universal interpolation properties
fully since, for example, to detect the translational symmetry, one only needs to check if
the function values are (nearly) the same when both arguments are shifted by (nearly)
the same a, and not by arbitrary amounts. However, this can be checked without neural
networks. Indeed, when testing for the translational symmetry, one may have an access
to two experimental data tuples y1 = f(x1, x2) and y2 = f(x1 + a, x2 + a + δx), where
δx is small, but nonzero, preventing an explicit observation of the symmetry. Instead of
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training a network, one could have written y2 ≈ f(x1 + a, x2 + a) + ∂f
∂x2

∣∣∣
~x+a

δx, so that

y2 − y1 ≈ f(x1 + a, x2 + a) − f(x1, x2) + ∂f
∂x2

∣∣∣
~x+a

δx, which would reduce to y2 − y1 ≈ ∂f
∂x2
δx

if the system was, indeed, translationally symmetric. Thus detecting the presence of the
symmetry is equivalent to checking for a linearity of the relation between y2 − y1 and δx
for small δx – something that can be done by linear regression analysis quickly for many
different values of (x1, x2). I suspect that this approach would be more robust than training
neural networks, which is still often an art.

However, the biggest open problems, in my opinion, are the following. First, we need
to understand why some equations can be discovered from just a handful of samples, and
others require millions. As discussed in [3], this may be because neural networks struggle
when functions they approximate have special points, which many physics laws do: for
example, the law of Universal Gravitation has a divergence when the distance between the
two gravitating bodies goes to zero. I suspect that understanding why and how methods
such as AI Feynman fail (or, at least, slow down to a crawl) will be as important for discovery
of new physical laws as the actual application of the algorithms to data. Indeed, when an
algorithm does not find a solution for a particular new problem, this would tell us something
specific about properties of the system we are analyzing, thus suggesting which approach
to try next. The second – and an even harder – open problem is to understand which
symmetries and other constraints one should include when biasing the search for equations.
That is, we do not necessarily expect data from biological systems to be symmetric, or to
be expressed in terms of low order polynomials, even if we believe that these data have a
relatively simple underlying structure. What replaces traditional global symmetries in such
scenarios remains to be seen.

In summary, AI Feynman is very effective in discovering textbook equations (for which
we know that our physical intuition does hold!) from simulated data. However, there’s still
a lot of work to be done before AI Feynman would be able to compete with Feynman – or
even with a lot less distinguished scientists – in finding new laws of nature.
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