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Bocquillon, B. Plaçais, A. Cavanna, Q. Dong, U. Gennser, Y. Jin, G. Fève
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Bartolomei et al. describe a two-particle interference experiment for fractional quantum
Hall effect (FQHE) anyons that is sensitive to their fractional statistics and obtain results in
excellent agreement with theoretical prediction [1]. A number of past experiments including
single-particle interferometry and edge-state thermal transport have provided evidence for
the expected fractional statistics of FQHE quasiparticles, but this novel two-particle inter-
ference experiment brings a new level of sophistication and direct evidence for the fractional
statistics.

To understand fractional statistics, it is crucial to distinguish between the behavior of
the quantum wave function under permutation of the particle labels versus the behavior
under physical exchange of the particles. Identical particles naturally have identical masses,
spins and interactions. Hence the Hamiltonian must be invariant under permutation of the
labels on the particles. This symmetry tells us that the non-degenerate eigenstates of the
Hamiltonian must be invariant (up to an overall phase) under permutation of the particle
labels. Because permuting two labels and permuting the same two again leads to the original
labeling, the only allowed phases under permutation are ±1, corresponding to bosons or
fermions. It is not always appreciated that this statement is true even for anyons! Anyons
are (quasi)particles that are distinguished, not by their permutation statistics, but by the
Berry phase acquired under actual physical exchange of two particles, i.e. their exchange
statistics. Such Berry phases are well-defined if, for fixed positions of the quasiparticles,
the system has an excitation gap. These phases form an abelian representation of the braid
group which can be non-trivial in 2+1-dimensions. In more complex cases where there is a
manifold of N degenerate states associated with each position of the quasiparticles, the Berry
phase is replaced by an SU(N) matrix acting within the degenerate subspace–a possibility
that has led to interest in topological quantum computation.

Single-particle interferometers measure the interference between quantum amplitudes
associated with a single particle traveling to the same final state via two different paths.
An optical Mach-Zehnder interferometer (see Fig. 1) is an archetypical example. Two-
particle interference typically involves the fact that two final states that differ only by the
permutation of the labels on the two particles are actually the same final state if the particles
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are indistinguishable. Since they are the same final state, the two quantum amplitudes for
arriving at these states add coherently and therefore interfere. The Hanbury-Brown-Twiss
(HBT) effect in quantum optics is the archetypcial 2-particle interference. In this effect
two incoherent sources of light (e.g. the light from two different sides of a star) do not
produce any detectable single-particle interference in detectors on the earth. Nevertheless
there exists a novel interference effect that correlates the fluctuations in intensity observed in
two detectors on earth. This is because, as illustrated in Fig. 1 there are two paths the two
photons can take to create a coincidence in the two detectors. Variation of the interference
with spatial separation of the detectors can be used to measure the angular diameter of stars
even though their size is far below the diffraction limit of optical telescopes.

A beautiful analog of the HBT effect can be seen in cold atom experiments with two
spatially separated Bose-Einstein condensates that have never been in contact and hence
have no mutual phase coherence [2]. If the BECs are released from their traps, the atom
clouds expand and eventually overlap. In the overlap region the observed atom density shows
an oscillatory interference pattern with a random phase that varies from shot to shot of the
experiment. The two-particle correlator 〈n(~r )n(~r ′) exhibits oscillations that are insensitive
to this random phase, whereas the single-particle interference pattern in the density washes
out upon ensemble averaging.

The Hong-Ou-Mandel effect, well known in quantum optics, is yet another two-particle
interference effect that concerns what happens to two single photons incident on an optical
beam splitter (see left panel of Fig. 2). If the two photons are indistinguishable (same
frequency, same arrival time on each side of the beam splitter), the input state |ψin = |11〉
is transformed by a 50:50 beam splitter into the output state

|ψout〉 =
1√
2

[|02〉+ |20〉] , (1)

in which, remarkably, the two bosons always exit from the same port. To see why this is so,
consider the fact that an ideal beam splitter performs a linear transformation on the mode
operators given by (

aout
bout

)
= S

(
ain
bin

)
S =

(
t r
−r t

)
. (2)

In order to preserve the boson commutation relations of the output modes, the matrix S
must be unitary and, without loss of generality, we can take it to have the form shown above
where t, r are the (real, non-negative) transmission and reflection amplitudes respectively,
with |t|2 + |r|2 = 1, and the mode labels refer to the left panel of Fig. 2.

Since in the Hong-Ou-Mandel experiment the input modes each contain precisely one
photon, we have: |ψin〉 = |11〉. Then using the S matrix for a 50:50 beam splitter (which has
t = r = 1/

√
2), it is straightforward to show that

〈a†outaout〉 = 〈b†outbout〉 = 1 (3)

〈a†outb
†
outboutaout〉 = 0, (4)
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Figure 1: Left panel: A single particle entering the input port of the Mach-Zehnder inter-
ferometer can take two different paths to detector A. The interference depends on the path
length difference of the two routes. Right panel: Hanbury-Brown-Twiss ‘intensity interfer-
ometer’ used for measuring the angular diameter of stars. Two photons, one from each side of
the star, can take two different paths that will cause both detectors to fire. The two-particle
interference does not require any coherence between the two photon sources.
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Figure 2: Left panel: Optical beam splitter that combines two input modes into two output
modes. Right panel: quantum point contact ‘beam splittter’ that permits quasiparticle
tunneling from one chiral edge mode to another in a fractional quantum Hall sample.

consistent with the fact that both photons always exit from the same port.
The experiment of Bartolomei et al. measures the cross correlations of the fluctuations in

the number of particles exiting a quasiparticle beam splitter (quantum point contact) shown
in the right panel of Fig. 2. Let us therefore compute the analogous quantity for our optical
beam splitter by defining

δn̂a = a†outaout − 〈a
†
outaout〉

δn̂b = b†outbout − 〈b
†
outbout〉.

(5)

Using Eqs. (3-4), we obtain the noise correlator

〈δn̂aδn̂b〉 = −1. (6)

Again this perfect anticorrelation is consistent with both particles always exiting the same
port.
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If we repeat this calculation for the case of fermions we obtain

〈a†outaout〉 = 〈b†outbout〉 = 1 (7)

〈a†outb
†
outboutaout〉 = 1, (8)

meaning that two fermions can never exit the same port (because of Pauli exclusion) and so
there must be one fermion in each output port every time. Thus

〈δn̂aδn̂b〉 = 0. (9)

All of the results above for (free) bosons and fermions were derived considering only the
permutation statistics of the particles. For the case of anyons we must recognize the role of
the additional statistical phase eiφ associated with physical exchange of the particles. For
φ = 0, bosons continue to behave as bosons and fermions as fermions. For φ = π bosons
act like fermions and vice versa. Thus as φ varies, we might naively expect 〈δn̂aδn̂b〉 = f
with the parameter f continuously interpolating between the limiting values 0 and −1. The
theoretical calculation in Ref. [1] addresses a number of non-trivial subtleties related to the
fact that the ‘anyon collider’ of Bartolomei et al. employs gapless edge modes of FQHE states.
These one-dimensional edge modes have long power-law tails in their temporal correlation
functions. They are also driven out of equilibrium under the conditions of the experiment.

For the case of filling factor 1/3 in the FQHE, quasiparticles have fractional charge 1/3
and φ = π/3. Since this fractional charge constitutes less than half a fermion, we expect
their behavior to be closer to that of bosons than fermions. In the limit in which auxiliary
point contacts inject a low density of quasiparticle excitations into each of the two edge
modes that meet at the primary point contact beam splitter (right panel of Fig. 2), Ref. [1]
predicts that the cross-correlator of the currents in the two output ports will indeed be closer
to the bosonic value than the fermionic. Bartolomei et al. find a generalized Fano factor (a
suitably normalized measure of the cross-correlations) close to P = −2 in agreement with
the theoretical prediction. The authors also carry out a number of control experiments and
cross checks that confirm the result and are consistent with the detailed theory.

Readers interested in more details may wish to consult the commentary on Bartolomei et
al. by Feldman [3]. New experimental results described in a recent preprint from the Manfra
group [4], utilizing an electronic Fabry-Perot interferometer in which Coulomb charging
effects are suppressed, will be reviewed in the accompanying commentary by Kivelson and
Marcus [5].
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