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A “coming of age” moment in learning physics might be when you realize that most
models in physics cannot be solved exactly. Afterwards, theoretical physics looks like a
pursuit of approximations. Then you have a refreshing encounter with nontrivial yet exactly
solvable models in many-body physics, such as the Ising model on the two-dimensional square
lattice and the S = 1/2 XXZ chain. Although some of these models have experimental
realizations (as good approximations) the fact remains that those models are very special.
Nevertheless, the significance of the exactly solvable models is underscored by the notion of
universality: critical behaviors of many systems belonging to the same “universality class”
are essentially the same. Thus the exact solution of a very special model can describe the
critical phenomena of many other models and real systems.

While the universality of critical phenomena is often introduced in terms of critical ex-
ponents, the concept of universality goes beyond the critical exponents. The long-distance
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asymptotic behaviors at the critical point are often described by a scale invariant (and often
conformally invariant) field theory. Away from (but still close to) the critical point, the
long-distance behaviors are described by a massive field theory. In fact, the scaling limit of
statistical mechanical model near the critical point can be regarded as the definition of the
field theory in the modern framework [1].

A delighting fact is that some of the continuum field theory is exactly solvable even if the
underlying microscopic model is not. An impressive example is the 1 + 1-dimensional Ising
model under a (longitudinal) magnetic field. Onsager’s celebrated exact solution of the two-
dimensional classical Ising model has been a source of inspiration for decades. The (quantum)
Ising chain under a transverse magnetic field is equivalent to the two-dimensional classical
Ising model, and is also exactly solvable. On the other hand, the two-dimensional classical
Ising model in a magnetic field, or equivalently the quantum Ising chain under both the
transverse and longitudinal field, is not exactly solvable, although the exact magnetization
exponent has been known. Remarkably, Zamolodchikov [2] found that the scaling limit of
these models near the quantum critical point is described by a factorized S-matrix of an
integrable field theory. It turned out to be “affine Toda field theory” [3] associated with the
E8 exceptional Lie algebra symmetry (for introduction to the mathematical aspects of E8, see
Refs. [4, 5]). That is, even though the Ising model under the longitudinal field is not exactly
solvable, its scaling limit is described by an exactly solvable field theory with a surprisingly
large emergent symmetry. This leads to numerous predictions beyond the critical exponents.
Most importantly, existence of 8 stable quasiparticles with particular ratios of mass gaps is
predicted. Physically, these quasiparticles can be interpreted as bound states of two domain
walls. The lowest excitation energy needed to create each quasiparticle corresponds to the
mass in the relativistic field theory. The E8 affine Toda field theory predicts exact ratios
among these mass gaps. The ratio of two lowest masses is given by the golden ratio:

m2

m1

=
1 +
√

5

2
. (1)

In fact, the two lowest-mass excitations were identified experimentally ten years ago in
Ref. [6], which was highlighted in the Journal Club for Condensed Matter Physics [7]. How-
ever, a skeptic might still think that this single ratio can appear just by a coincidence.

The recent experimental works reported in the highlighted papers identify more quasi-
particles, and found that they agree well with the theoretical prediction. This gives a more
convincing evidence of the relevance of the E8 affine Toda field theory. Since two of the
recent studies are on a different material than that was used in Ref. [6], this is also a good
demonstration of universality. I refer the reader to Ref. [7] for more backgrounds, and focus
on complementary issues in this commentary.

First let me comment about the materials. In the highlighted paper 3, CoNb2O6, which
was also used in the earlier experimental demonstration of the E8 symmetry, is studied. While
it has been regarded as a realization of the simplest theoretical model, namely the transverse-
field ferromagnetic Ising chain with S = 1/2, it was recently pointed out that the system is
more intricate [8]. Nevertheless, the quantum critical phenomena in one dimensional limit
is still governed by the Ising universality class, and the E8 affine Toda field theory should
remain a valid description once the interchain interaction is taken into account.
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In contrast, the material studied in the highlighted papers 2 and 3 is BaCo2V2O8, which
is a more complicated antiferromagnet. The phase diagram of BaCo2V2O8was studied in
detail in Ref. [9]. According to it, BaCo2V2O8 is rather modeled by coupled S = 1/2
antiferromagnetic XXZ chains. The effective Hamiltonian of a single chain under the external
magnetic field H applied in y direction is

HXXZ =J
∑
j

[
ε
(
Sxj S

x
j+1 + Syj S

y
j+1

)
+ SzjS

z
j+1

]
−H

∑
j

(
(−1)jgxyS

x
j + gyyS

y
j + gyz cos

(
2j − 1

4
π

)
Szj

)
,

(2)

where ε ∼ 0.53 is the anisotropy parameter and gαβ are the elements of the g-tensor. While
the transverse interaction is sizable in BaCo2V2O8, the longitudinal interaction along the
easy axis is stronger. Thus, in the absence of the magnetic field, the ground-state has a
long-range Néel order in z-component of the spins, breaking the Z2 (spin-flip) symmetry
spontaneously.

When a magnetic field is applied in y direction, the effective staggered field in x direction
proportional to Hgxy induces quantum fluctuations in z-component of spins, playing the
role of the transverse field in the Ising chain. As the applied field is increased, the spins are
canted toward the effective staggered field, and the Z2 symmetry is eventually recovered for
a strong applied field. Thus there should be a quantum phase transition at a critical field,
and it turns out to be in the (1 + 1)-dimensional Ising universality class [9, 10]. Concerning
the critical behavior, the y and z components of the magnetic field are irrelevant.

In the presence of the long-range Néel order in z-components, the relatively weak but
non-vanishing interchain interaction in the real material induces an effective staggered lon-
gitudinal field ∝

∑
j(−1)jSzj below the three-dimensional critical magnetic field. This plays

the role of the longitudinal (uniform) magnetic field of the ferromagnetic transverse-field
Ising chain. Therefore, despite the apparent differences, at the critical magnetic field of the
pure one-dimensional model, the system is described by the same E8 affine Toda field theory
as the critical transverse-field Ising chain in a small longitudinal field.

It is beyond the scope of the present commentary to review the E8 affine Toda field
theory itself; the reader is referred to the comprehensive book [3] for details. Nevertheless,
in the Appendix, I will review how the “magic numbers” representing the mass ratios can
be obtained. It is a neat exercise which can be enjoyed even if you are not familiar with
integrable field theories, or even with Lie algebras.

The three highlighted works identified several of these quasiparticle masses using different
techniques: Terahertz (THz) spectroscopy and inelastic neutron scattering. In either case,
an incident photon or neutron creates an excited state, and its energy is resolved. At zero
effective momentum transfer, a single-quasiparticle excitation gives rise to a delta-function
peak (broadened by the experimental resolution) at the quasiparticle mass in the spectrum.
It should be noted that the spectrum evolves continuously as the applied magnetic field is
varied. It is when the effective transverse field is at the critical value (and the effective
longitudinal field is the only relevant perturbation to the Ising conformal field theory), the
E8 affine Toda field theory effectively describes the system. Thus the comparison to the E8

affine Toda field theory must be made for experimental data with the applied magnetic field
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Figure 1: Experimental spectra detecting the E8 particles: inelastic neutron scattering in-
tensity of BaCo2V2O8 (left: from the highlighted paper 1), and optical absorption intensity
of CoNb2O6 (right: from the highlighted paper 3).

corresponding to the 1D quantum critical point.
Remarkably, the peaks correspond to single quasiparticle masses predicted by the E8 affine

Toda field theory are indeed observed up to m5 (in the THz spectroscopy of BaCo2V2O8 in
the highlighted paper 2), m6 (in the THz spectroscopy of CoNb2O6 in the highlighted paper
3), and possibly m8 (in the neutron inelastic scattering in the highlighted paper 1, although
the heaviest ones especially m8 may be questionable), and the peak positions at the 1D
quantum critical point agree well with the mass ratios from the E8 affine Toda field theory.

An important point is that, 5 quasiparticle masses (m4 and above) are heavier than 2m1.
In terms of energetics, such a quasiparticle can decay to two m1 particles and thus is ex-
pected to be unstable. However, these heavier quasiparticles are protected from decaying by
the symmetry and remain stable (within the E8 affine Toda field theory). Still you might
expect that, the heavier quasiparticle peaks would be buried in the two-particle continuum
(the continuum of the excited states with two quasiparticles with various relative momen-
tum and zero total momentum). Somewhat surprisingly, however, the heavier quasiparticle
peaks are rather clearly visible even in the two-particle continuum above 2m1. This was
predicted [11] by a numerical simulation using Time-Evolving Block Decimation (TEBD)
and also supported by the recent theoretical calculations in the highlighted papers 1 and 2,
based on the exact form factor of the E8 affine Toda field theory.

The further experimental confirmations of Zamolodchikov’s remarkable theoretical pre-
diction are not only impressive achievement of experimental magnetism but also demonstrate
the power of universality, emergent symmetry, and emergent integrability. The author thanks
Yuji Tachikawa for drawing his attention to the recent experimental works.
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Figure 2: Experimentally identified masses (peak frequencies corresponding to single-
quasiparticle creation) in unit of the smallest mass m1. Panels (a), (b), and (c) are taken
from the highlighted papers 1, 2, and 3, respectively. They agree well with the prediction of
the E8 affine Toda field theory near the quantum critical point (corresponding to the applied
field of 4.7T to 5T in both materials) of the one-dimensional system.
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Appendix: how to obtain the “magic numbers” (mass

ratios in the affine Toda field theory)

In this Appendix, I review (rather superficially) how the exact mass ratios in the E8 affine
Toda field theory are obtained, based on the theory which had been developed long before the
highlighted works in this commentary. While I do not give the logic behind the calculation
(for that, the reader is referred to Ref. [3]), I describe the relatively simple procedure which
could be followed with minimal backgrounds. I hope this helps the reader appreciate some
part of the intriguing mathematics behind the remarkable prediction.

Lie algebras, which describe continuous symmetries, are classified in terms of Dynkin
diagrams [12]. The Dynkin diagrams represents a geometric relation among “simple roots”
of the Lie algebra. Here I focus on a class of Lie algebras called simply-laced Lie algebras.
The Dynkin diagrams of the simply-laced Lie algebras are shown as in Fig. 3. There are two
infinite series An and Dn, which correspond to the special linear group SL(n) and the special
orthogonal group in even dimensions SO(2n). Besides them, there are three exceptional Lie
algebras E6, E7, and E8. For each of these symmetries, there exists an integrable affine Toda
field theory associated with the symmetry.

An

Dn

E6

E7

E8

1 2 3 4 5 6 7

8

Figure 3: Dynkin diagrams of simply-laced Lie algebras. There are two infinite series An
(n = 1, 2, 3, . . .) and Dn (n = 4, 5, 6, . . .), and three exceptional Lie algebras E6, E7, and E8.
The subscript represents the number of nodes. Each node of the Dynkin diagram for E8 is
numbered for later convenience.

The Cartan matrix associated with the Dynkin diagram is given as
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� Each node in the Dynkin diagram corresponds to a basis of a vector space; the Cartan
matrix C is a square matrix of dimension equal to the number of nodes in the Dynkin
diagram.

� Each diagonal element of C is 2.

� If the nodes i, j are connected by a line, the matrix element Cij = −1, while Cij = 0
if the two different nodes i 6= j are not connected.

For example, the Cartan matrix for E8, for the numbering of the nodes as in Fig. 3, reads

C =



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2


(3)

The Cartan matrix can be interpreted as a tight-binding Hamiltonian on the Dynkin
diagram with hopping amplitude −1 on every bond and the chemical potential 2 at every
site. Let Ψ be the ground state of the tight-binding Hamiltonian, namely

CΨ = E0Ψ, (4)

where E0 is the ground-state energy (lowest eigenvalue of C). As in the case of the Schrödinger
equation in the continuum, the ground-state is “nodeless” and every component is positive:

Ψj > 0. (5)

More precisely, this is a consequence of the Perron-Frobenius theorem as the incidence ma-
trix 2 − C is a Perron-Frobenius matrix (with only non-negative elements and satisfying
the connectivity condition). It turns out that these elements Ψj of the “ground state wave-
function” give the mass spectrum of the affine Toda field theory associated with the Lie
algebra [3]. Thus, the prediction of the mass ratios is reduced to obtaining the ground state
of the tight-binding model on the Dynkin diagrams.

First let us consider the series An. The Dynkin diagram is just the linear chain of length
n. The Cartan matrix then is the standard tight-binding model on a finite linear chain with
uniform hopping matrix element and chemical potential with open boundary conditions. An
eigenstate on the linear chain is given by a superposition of “plane waves” e±ipj for a certain
wavenumber p. In order to satisfy the open boundary conditions, which can be represented
by Ψ0 = Ψn+1 = 0 with the extra fictitious sites 0 and n+ 1, the eigenstate should be

Ψj = sin
πkj

n+ 1
, (6)

where k = 1, 2, . . . , n, with the energy eigenvalue

E = 2− 2 cos
πk

n+ 1
. (7)
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The ground state is given by the smallest wavenumber k = 1. Thus the mass spectrum is
given by

Ψj = sin
πj

n+ 1
, (8)

where j = 1, 2, . . . , n.
Now let us move to the case of our interest, E8. The Dynkin diagram of E8 consists

of linear chain segments, which shares the common site 5. Generalizing the analysis of An
above, on the chain segment consisting of sites 1 to 5, the eigenstate can be written as

Ψj = sin pj (j = 1, 2, 3, 4, 5), (9)

with a wavenumber p, which is undetermined at this point. The corresponding energy
eigenvalue is

E(p) = 2− 2 cos p. (10)

Similar argument applies to the shorter segments. For the sites 5, 6, and 7,

Ψ6 =Ψ5
sin 2p

sin 3p
=

sin 2p sin 5p

sin 3p
, (11)

Ψ7 =Ψ5
sin p

sin 3p
=

sin p sin 5p

sin 3p
, (12)

since we have already fixed Ψ5 by Eq. (9). Similarly, for the sites 5 and 8,

Ψ5 =Ψ5
sin p

sin 2p
=

sin p sin 5p

sin 2p
. (13)

Here we need to use the same wavenumber p for all j. So far p is a free parameter, but we
can fix it by requiring the eigenequation to be satisfied at site 5:

−(Ψ4 + Ψ6 + Ψ8) + 2Ψ5 = E0Ψ5, (14)

which implies
sin 4p

sin 5p
+

sin 2p

sin 3p
+

sin p

sin 2p
= 2 cos p. (15)

The solutions of this equation are

p =
kπ

30
, (16)

k =1, 7, 11, 13, 17, 23, 29. (17)

The ground state is given by the smallest p among them, p = π/30. Then all the elements
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Ψj are determined. If we order the masses by their magnitudes,

m1 =Ψ1, (18)

m2 =Ψ7 =
1 +
√

5

2
m1 ∼ 1.61803m1, (19)

m3 =Ψ2 = 2 cos
π

30
m1 ∼ 1.98904m1, (20)

m4 =Ψ8 =
1

2 sin π
15

m1 ∼ 2.40487m1, (21)

m5 =Ψ3 =
sin π

10

sin π
30

m1 ∼ 2.9563m1, (22)

m6 =Ψ6 =
sin π

6
sin π

15

sin π
30

sin π
10

m1 ∼ 3.21834m1, (23)

m7 =Ψ4 =
sin 2π

15

sin π
30

m1 ∼ 3.89116m1, (24)

m8 =Ψ5 =
sin π

6

sin π
30

m1 ∼ 4.78339m1. (25)

This gives the desired mass spectrum in the E8 affine Toda field theory, which are experi-
mentally “seen” in the highlighted works! The reader might want to try simular calculations
for other (simply-laced) Dynkin diagrams and check them with Ref. [3].
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