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As students we all learn of the beautiful path integral formulation of quantum mechanics,
in which the real time propagator 〈x(t2) |x(t1) 〉 may be written as the functional integral,
with respect to the so-called Wiener measure, over all paths x(t) connecting the endpoints

x(t1) = x1 and x(t2) = x2, weighed by the phase eiS/~, where S
[
x(t)

]
=
∫ t2
t1
dt
{

1
2
mẋ2−V (x)

}
is the action functional. In the semiclassical limit, one regards ~ as a small parameter,
and the stationary phase approximation δS[x(t)] = 0 yields the classical Euler-Lagrange
equations of motion mẍ = −V ′(x). As ~ → 0, quantum uncertainties become negligible
and one recovers classical mechanics†. It might at first seem that inverting this procedure,
i.e. deriving quantum mechanics, the Schrödinger equation, state vectors and Hermitian
operators from classical mechanics, is an impossible task. However, it turns out that a
program of this sort is indeed possible, as elucidated by Claeys and Polkovnikov, clarifying
and extending earlier work of Hayakawa and others [3].

Given any stationary classical probability distribution P (x, p) and a free parameter ε
with dimensions of ~, one can define a quasi-density matrix Wε(x1, x2) according to

Wε(x+ 1
2
ξ, x− 1

2
ξ) =

∞∫
−∞

dp P (x, p) e−ipξ/ε , (1)

where x1,2 = x ± 1
2
ξ. When ε = ~ and W~ = %(x1, x2) is the density matrix, P (x, p) is

the usual Wigner function. More generally, since P (x, p) is real, Wε(x1, x2) =W∗ε (x2, x1) is
Hermitian and may be expressed in an orthonormal basis of eigenfunctions: Wε(x1, x2) =∑

αwα ψ
∗
α(x1)ψα(x2), with TrWε =

∞∫
−∞
dxWε(x, x) =

∞∫
−∞
dx

∞∫
−∞
dpP (x, p) =

∑
αwα. The catch

†See [1]. The classical limit of the equations of motion can also be recovered via the use of coherent
states, or through the Wigner-Weyl phase space formalism discussed, e.g., in [2]
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is that the eigenvalues wα are not necessarily confined to the unit interval [0, 1], which is
always the case for a proper density matrix†.

If P (x, p, t) is time-dependent, satisfying the Liouville equation ∂tP =
{
H,P

}
with

Poisson bracket dynamics, then Wε inherits a corresponding dynamics, iε ∂tWε = L̂εWε,

where L̂ε is a linear operator. For H(x, p) = p2

2m
+ V (x) and in the ε→ 0 limit, one recovers

the Schrödinger equation iε ∂tψα(x, t) =
{
− ε2

2m
∂2

∂x2
+V (x)

}
ψα(x, t) for each eigenfunction ψα,

along with the condition that the eigenvalues wα are time-independent. Furthermore, and
for arbitrary ε, averages with respect to the classical distribution P (x, p) can be expressed
as an expectation value of operators with respect to the quasi-density matrix Wε viz.

〈O(x, p) 〉 =

∞∫
−∞

dx

∞∫
−∞

dp O(x, p)P (x, p) =
∑
α

wα 〈ψα | O(x̂, p̂) |ψα 〉 , (2)

where to each function O(x, p) corresponds a Hermitian operator O(x̂, p̂), expressed in terms
of x̂ = x and p̂ = −iε ∂x .

It is instructive to consider the Gaussian distribution P (x, p) = (πε)−1 e−x
2/2σ2

x e−p
2/2σ2

p .
Claeys and Polkovnikov show that when the uncertainty ratio u ≡ σxσp/(ε/2) = 1 the
quasi-density matrix Wε(x1, x2) = ψ∗0(x1)ψ0(x2) is a pure state, where ψ0 is the harmonic
oscillator ground state wavefunction. When u > 1, Wε corresponds to a Gibbs distribution
with wn = e−nγ/Z and γ = ln

[
(u+ 1)/(u− 1)

]
. When u < 1, the eigenvalues oscillate, with

wn = (−1)n e−nγ̃/Z and γ̃ = ln
[
(1 + u)/(1 − u)

]
. Thus, negative probabilities result when

P (x, p) violates the uncertainty relation σxσp ≥ ε
2
.‡

Consider next the microcanonical distribution, P (x, p;E) = δ
(
E − p2

2m
− V (x)

)/
D(E),

where D(E) is the density of states‖. For linear and quadratic potentials, the eigenstates of
the quasi-density matrix correspond exactly to the quantum eigenstates, and their associated
eigenvalues wα can be obtained exactly. In the case of the linear potential V (x) = αx, the
spectrum wE(E) of Wε is labeled by a continuous parameter E with dimensions of energy,
and is proportional to an Airy function of the difference E−E . When E � E, the eigenvalues
are exponentially small and positive, while for E � E the eigenvalues are highly oscillatory
and negative over an infinite set of E intervals. For the harmonic potential V (x) = 1

2
mω2x2,

the spectrum is discrete; with wn(E) exponentially small for En ≡ (n + 1
2
) εω < E and os-

cillating for En > E. By convolving the microcanonical distribution with a Gaussian energy
uncertainty function of width σE, the oscillations can be completely suppressed provided
∆E∆t>∼ ε, where ∆E = σE and ∆t = (mε/α2)1/3 for the linear potential and ∆t = 1/ω for
the harmonic potential are characteristic time scales.

For the case of the canonical distribution P (x, p) = Z−1 e−βp2/2m e−βV (x), the eigenvalue

†Similarly, the Wigner function W (x, p, t) = (2π~)−1
∫∞
−∞ dξ 〈x+ 1

2ξ | % |x−
1
2ξ 〉 e

ipξ/~ is real but in gen-
eral not everywhere positive.
‡In both cases, Z =

∑∞
n=0 wn is the partition function.

‖Thus Trx,p P (x, p;E) = 1.
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Figure 1: Comparison of classical eigenstates obtained from the Gibbs distribution with
β = 0.1, 0.5, and 1 (broken lines) in comparison with the exact quantum stationary states
for the quartic potential V (x) = 1

4
νx4, with m = ε = ~ = ν = 1.

equation may be written exactly as

wn ψn(x) =
1

Zx

∞∫
−∞

dξ exp

[
− mξ2

2βε2
− βV (x− 1

2
ξ)

]
ψn(x− ξ) . (3)

where Zx =
∫∞
−∞ dx e

−βV (x). The Schrödinger equation − ε2

2m
ψ′′n(x) + V (x)ψn(x) = En ψn(x)

is then recovered both (i) when ε → 0 as well as (ii) when β → 0, with wn = e−βEn/Z
with

∑∞
n=0wn = 1. In the latter case, the correct quantum stationary states are recovered

when we set ε = ~, independent of the accuracy of the WKB approximation. In the opposite
limit, when β →∞ and the classical distribution becomes narrow, the eigenspectrum of Wε

features negative probabilities. The example of the quartic potential V (x) = 1
4
νx4 is shown

in Fig. 1. With β = 0.1, the classical eigenstates obtained from the Gibbs distribution
reproduce the energies of the ten lowest eigenstates to better than 0.05%. Claeys and
Polkovnikov find similarly good agreement for the case of the tunneling states in the one-
dimensional double well potential V (x) = 1

4
ν(x2− 1)2. Their results for the two-dimensional

system with
VA(x, y) = 1

2
m(ω + δ)2x2 + 1

2
m(ω − δ)2y2 + 1

4
νx2y2 (4)

are shown in Fig. 2. The classical equations of motion are thus nonlinear and exhibit chaotic
trajectories.

Claeys and Polkovnikov [4] have also investigated their pseudo-density matrix in the con-
text of the Bohigas-Giannoni-Schmidt conjecture [5], which says that the spectra of chaotic
quantum systems exhibit random matrix statistics associated only with certain global sym-
metries. They construct a two-dimensional potential VB(x, y) corresponding to a Sinai bil-
liard system from a sequence of smoothed step functions, depicted in Fig. 3. From the
canonical distribution P (x, y, px, py) = Z−1e−βH(x,p) they once again derive Wε(x1,x2) and
analyze the eigenvalue spacings distribution

rn =
λn+1 − λn
λn+2 − λn+1

≡
log(wn/wn+1)

log(wn+1/wn+2)
. (5)
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Figure 2: Top: classical eigenstates obtained from the Gibbs distribution with β = 1.

Bottom: quantum eigenstates of the Hamiltonian Ĥ = p̂2x
2m

+
p̂2y
2m

+V (x̂, ŷ) where the potential
VA(x, y) is given in the text. The parameters are m = ω = ε = ~ = 1, δ = 0.1, and ν = 20.

The results match extremely well with those expected from the Gaussian orthogonal ensemble
(GOE) of random matrix theory.

To summarize, the Wigner transform which maps a quantum mechanical density matrix
%(x1, x2) to a classical phase space distribution W (x, p) can be inverted, mapping a classical
phase space distribution P (x, p) to a (quasi-)density matrix Wε(x1, x2), where ε is a free
parameter which plays the role of ~. Moreover, Wε(x1, x2, t) inherits dynamics from the Li-
ouville dynamics of P (x, p, t). One can expand Wε(x1, x2) =

∑
αwα ψ

∗
α(x1)ψα(x2) in terms

of its orthonormal eigenfunctions ψα(x) and their corresponding eigenvalues wα, normalized
according to

∑
αwα = 1. However, the condition wα ∈ [0, 1] is in general violated when-

ever the classical distribution violates the uncertainty relation ∆x∆p>∼ ε, similar to what
happens with the Wigner function itself, which can take negative values and is thus a quasi-
distribution on phase space. For the Gibbs distribution P (x, p) = Z−1 e−βH(x,p), the“classical
eigenstates” of Wε precisely agree with their quantum counterparts in the high temperature
(β → 0) limit. Finally, the level spacings distribution obtained from a potential correspond-
ing to a Sinai billiard, but smoothed at the spatial boundaries, reproduces extremely well
the predictions of the GOE from random matrix theory. Further connections of this work
to issues of thermalization and classical vs. quantum chaos, such as the phenomenon of
quantum scars [6], should be interesting to pursue.

I am grateful to Pieter Claeys and Anatoli Polkovnikov for sharing the results depicted
in Fig. 3 prior to distribution, and for helpful comments.
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Figure 3: Left: Spatial probability distribution for a chaos-producing two-dimensional poten-
tial corresponding to a Sinai billiard system with smoothed spatial edges. Right: Histogram
of the consecutive level spacings ratio rn derived from the Gibbs ensemble with m = 1,
β = 0.3 and ε = 0.2. The dashed black curve shows the results of the Gaussian orthogonal
ensemble (GOE).
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