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Hairs and pores in low-Reynolds-number flows
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From the subcellular cytoplasmic flows and to the circulation of blood and other biological
fluids, most life is composed primarily of water which is typically in constant motion [1, 2].
The management and control of that motion is paramount for the fitness of every organism.
Many of the flows inside living organisms happen at low Reynolds numbers, and as such
they are spared from the capriciousness of turbulence at high Re and other non-linearities
at intermediate Re. However, that does not mean that the behavior of these low Reynolds
number flows is always ordinary. The papers by Alvarado et al. and Louf et al. presented
in this commentary explore two instances of the rich phenomenology of these flows. Both
works use biology as inspiration to discuss how fluid flows interact with the soft materials
that surround them, and how these interactions give rise to non-trivial and non-monotonic
changes of drag and resistance.

In the paper by Alvarado et al., the authors consider dense mats of deformable hairs
subject to low-Reynolds number flows (see Fig. 1A). For their experimental setup, they use a
Taylor-Couette geometry composed of two concentric cylinders rotating with respect to each
other. The fluid is confined between a “hairy” surface with bendable elastomer protrusions
and a smooth surface. Although the constitutive relations that govern the system are linear,
the authors find that a nonlinearity in the drag reduction emerges. The vertically anchored
hairs, when subject to a fluid flow, respond by bending in the direction of the flow, as
shown in Fig. 1B. The deformation of the hairs increases the gap between the tip of the
hairs and the smooth surface, thus decreasing the overall drag characterized by an area
specific impedance Z(v) = τ(v)

v
= η

∆H(v)
, where τ(v) is the shear stress, v is the velocity of

the hairy surface, ∆H(v) is the distance of the hair-tip plane to the smooth surface and
η is the fluid viscocity. Straight hairs that are cantilivered perpendicularly to the surface
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always deliver a drag reducing effect. However, hairs that are anchored at an angle to
the surface as in Fig. 1C, break reflection symmetry. For moderate flow against the grain,
the hairs “lift”, thus decreasing ∆H(v) and increasing the drag. At higher flow rates, the
hairs bend in the direction of the flow, ∆H(v) increases again and the drag reduces. By
balancing the force needed to bend a hair with the force from the shear stress at the tip,
and performing pertrubation analysis, the authors uncover a dimensionless velocity which
controls the impedance.

Figure 1: Schematic depicting the
hair mat. (A,B) Perpendicularly
anchored, zero flow at (A) and de-
formed filaments due to flow at
(B). (C,D) Hairs anchored at an
angle, zero flow at (D) and mod-
erate flow against the grain.

The authors in Louf et al. explore a similar low
Reynolds number flow interacting with a soft structure,
this time arising not from bendable hairs but from per-
forated thin membranes. The work is motivated by
the membrane pores present in many biological systems
such as plasmodesmata in plants and septal nanopores
in fungi, which serve to control fluid flow and prevent ex-
treme water loss in the event of damage. In their setup,
the authors consider a cylindrical elastic plate with a
narrow pore in the center, a cross-section of which can
be seen in Fig. 2A. A pressure is applied across the plate.
At low pressure, bending dominates the deformation. If
the pore is very small compared to the thickness of the
membrane, the pore size decreases as in Fig. 2B, and the
hydraulic resistance increases. (A discussion of bending
induced aperture constriction in presented in detail in
[3] for two rectangular plates separated by a narrow slit;
the corners of the plates come together as the plates
start deforming and the slit width decreases.) At high
pressures, the membrane stretches, the pore opens, and the hydraulic resistance decreases.
The authors identify the characteristic pressure that determines whether the plate will be
in the stretching or the bending regime as pe ∼ Ed4/R4, where E is the Young modulus of
the plate, d the plate thickness, and R the plate radius. Thus, the authors discover that
a flexible, perforated membrane can act as a simple non-linear resistor that can passively
control the flow, with fluidic resistance increasing at moderate pressures and decreasing at
high pressures.

The two articles presented in this commentary are two elegant examples that demonstrate
the broad phenomenology of fluid-structure interactions. They are very interesting as they
point to the tantalizing observation that living organisms, being composed largely of fluids
and soft elastic materials that contain them, are not only subject to these interactions, but
harness them to promote a function. Alvarado et al. hypothesize that the drag reducing
nonlinearity of biological hair beds such as the hyaluronan brushes of blood vessels or the
brus-border microvillii of kidney tubules, protects the mechanotransducive function of these
hair mats from excessive stresses. Louf et al. similarly propose that perforated plates may
actually play an important role in mitigating the effects of large scale damage, and perform
many fluid control functions such as delay pressure driven cytoplasmic loss. Evolution seems
to be acutely aware that living tissue is largely soft and easily deformable by flows, and
frequently uses simple, yet ingenuous fluid mechanical methods to achieve passive control

2



devoid of biochemical complexity. By looking at how similar fluid flow problems are solved
in different organisms by utilizing soft matter physics, we can learn how to design better
valves and flow modulators that are cheap, effective and robust.

Figure 2: Schematic of the cross
section of the perforated membrane
inside a channel. (A) No flow.
(B) Moderate pressure difference (C)
High pressure difference.
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