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Counting constraints in tissue mechanics

1. Multicellular Rosettes Drive Fluid-solid Transition in Epithelial Tissues
Authors: Le Yan and Dapeng Bi
Phys. Rev. X 9, 011029 (2019)

2. Bayesian inference of force dynamics during morphogenesis
Authors: Shuji Ishihara and Kaoru Sugimura
Journal of Theoretical Biology 313 (2012) 201–211

Recommended with a Commentary by Silke Henkes, School of
Mathematics, University of Bristol

Understanding the mechanics of tissues is crucial to understanding multicellular life: All
existing animals undergo gastrulation, where the embryo turns inside-out in the first step of
the formation of the germ layers that will later become different parts of the body, like the
brain, the skin or inner organs [1]. Two-dimensional, one cell thick epithelial cell sheets are
at the heart of this transformation, and understanding the mechanics of these cobble-stone
pavement like structures is necessary to understand embryo development and cell mechanics
in general.

In recent years, physics has started to contribute models of epithelial tissues. The most
celebrated (but not the only) of these models is the Vertex model [2, 3], which in its most
compact form corresponds to an energy functional
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2
(AI − A0)
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(PI − P0)
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Here, the sum is over model cells I that form a two dimensional planar polygonal tesselation
(see Figure 1) where individual cells have area AI and perimeter PI . The first term, the
area term punishes deviations from a target area A0 with stiffness parameter K, and the
second similarly punishes perimeter fluctuations with stiffness Γ. Inspired by foam models,
this energy functional can be seen as a quadratic expansion of an effective free energy near
a (mechanical) equilibrium state. The biological relevance of this precise form of the energy
has been under evaluation since the Vertex model was first formulated, and a large number
of variants with additional terms like specific junction springs exist [4]. I will return to
biological relevance, in particular the role of dynamics, below.
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Figure 1: Polygonal cell tiling at the
heart of vertex model formulations.

Recently, the physics of this model has attracted a
lot of attention [5, 6, 7]. Of particular interest, there is
an apparent rigidity transition between a solid and a
liquid in this model as a function of the shape param-
eter p0 = P0/

√
A0 (or equivalently the isoperimetric

quotient s0) around the value of p∗0 ≈ 3.81.
The first recommended paper by Yan and Bi ap-

proaches this rigidity transition carefully using con-
straint counting, bolstered by an explicit calculation
of the Hessian and its null space as well as an ef-
fective medium theory approach. Counting such con-
straints has previously been attempted in two commu-
nities: Initially, by the theoretical biology community
in the context of force inference methods. The second
recommended paper by Ishihara and Sugimura care-
fully counts the independent force components and
the degrees of freedom in the system, and then uses a
bayesian statistics framework on the inverse problem
of finding the most likely forces and pressures in the
tissue. Second, the problem has also been approached by the soft matter community, in par-
ticular Merkel et al [8, 9], as an extension of the study of network rigidity [10], and by Moshe
et al [11] in a continuum nonlinear elastic problem. The emerging consensus is that a geo-
metric incompatibility between the area and perimeter terms leads to frozen-in self stresses
in much of parameter space which can stabilise the tissue. This is the same mechanism as
tensegrity (as popularised by Buckminster Fuller), and an established mechanism for spring
network mechanics. Therefore unlike e.g. for rigidity problems in granular materials [12],
the tension on junctions is emerging as a crucial variable.

At the heart of all of these approaches is the following Maxwell constraint counting
arithmetic: Consider an epithelial tissue such as in Fig. 1, with F cells, E junctions and
V vertices. The Euler topological criterion requires V − E + F = 0, assuming there are no
holes of boundaries for simplicity. For each of its V vertices, there are 2 degrees of freedom.
For the system to be rigid (at least at a mean field level, see rigidity percolation problems
for exceptions), there need to be a sufficient number of constraints to fix these degrees of
freedom. The problem lies in counting them: A naive argument would count F constraints
from each of the area and perimeter terms, leading to N0 = 2V −2F zero modes. In a regular
tissue where each vertex has Z junctions i.e. E = Z/2V , this suggests N0 = (4−Z)V , or for
Z < 4 a heavily underconstrained material which leads to the manifestly incorrect conclusion
that a standard hexagonal tissue is never rigid.

Yan and Bi ultimately come to the same conclusion as the other soft matter approaches:
the prestresses, i.e. the tension Te in the junctions, is responsible for rigidity. However, their
approach is a tour de force which yields much more precise results: By computing the Hessian
matrix analytically, the authors are able to compute its nullspace. The calculation hinges
on the rank of the 2V × 2V Hessian. The salient terms are F stiffness terms coming from
the perimeter term, and an additional but hard to calculate number from the area term. In
addition to these terms already present in the naive counting, and following arguments that
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have been recently made in the glassy materials community [13], every edge under tension
contributes positive definite term to the Hessian, thus increasing its rank by 1. Then there
will be an additional E − E0 contributions, one from each junction with positive tension.
Ultimately, the number of null-modes at K = 0 (no area terms) which sets the rigidity
boundary is given by

N0 = 2V − [(E − E0) + F ] (2)

As alluded to in the title, the paper specifically applies this approach to cell tilings
where 4-vertices and higher order vertices (rosettes) are present. This can be parametrised
by Z ≥ 3, the mean vertex coordination as N0 = (3 − Z)V − E0, and the Z = 3 point
then corresponds to marginal stability when all junction forces are positive (i.e. E0 = 0).
This is precisely at the point where area and perimeter terms start to become incompatible,
p∗0 = 3.72 for a hexagonal ordered tissue, corresponding to an unstressed regular hexagon,
and empirically p∗0 ≈ 3.81 for a disordered one. The phase boundary of rigidity then shifts
linearly upwards to Z > 3 for larger p0. The authors then turn to effective medium theory
to compute the shear modulus of the system, for a network with given Z and a prescribed
fraction of non force-bearing junctions. The authors find excellent agreement between the
predicted rigidity line and the counting argument. In conceptual agreement, Merkel et al [9],
for networks, are also able to compute the shear modulus and its jump across the rigidity
transition, using the point in edge length where tensions become positive.

However, at this point one has to return back to biological plausibility: The vertex model
is not expected to be a particularly realistic approximation of tissue mechanics, and thus
counting arguments that rely on the specific form of its potential are not generic. Ishihara
and Sugimura set out to develop a formalism for force inference on a given network, with more
generic assumptions. The counting argument of Ishihara and Sugimura is as thus: Based on
the experimentally accessible variables, every junction edge length le enters the definition of
the potential, and the area of every cell AI , leading to a generic potential V ({AI}, {le}).

One writes the general form of the force on each vertex, Fi = Â · P, where P =
({∂U/∂le}, {∂U/∂AI}) = ({Te}, {PI}), the F + E length vector of individual junction ten-
sions and cell pressures. The compatibility matrix (or rather its inverse) is Âie = ∂le/∂ri
and ÂiI = ∂AI/∂ri, with dimensions 2V × (F + E). In the quasistatic limit, the force on
every vertex is zero, and force inference is then equivalent to finding the most likely solution
to Â · P = 0. The counting here is identical to Yan and Bi: The number of unknown force
components is given by (F +E)−2V = −N0, assuming positive tensions on junctions. Much
like in an approach developed for granular packings, the force network ensemble [14], force
inference then presumes that the network is overconstrained, i.e. that there are a sufficient
number of force components to fix vertices, N0 < 0 in the notation above, and that therefore
there is a |N0|-dimensional space of allowed forces (or equivalently self-stresses). As observed,
this system is very nearly isostatic for Z = 3, and then a careful counting identifies a force
space with dimension ∼ R, the number of boundary cells of the observed tissue. As for Yan
and Bi, and as required by the Euler criterion, higher order vertices contribute one extra
force component / constraint each to the counting. While the force network ensemble then
seeks to compute allowed force distributions based on a flat measure, force inference uses a
Bayesian approach to find the most likely force configuration.

This approach is then thoroughly tested on vertex model simulated data, with excellent
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agreement, and also already applied to experimental data from drosophila embryos. It reveals
strongly heterogeneous junction forces and the presence of shear stresses in the system.
Force inference has become an established technique, in particular for drosophila, where
the quasistatic assumption is a good approximation [15]. The results of both recommended
papers then lend weight to constraint counting to be ultimately as follows, with observed
biological tissues being on the rigid side of constraint counting:

� Two degrees of freedom per vertex (2V )

� One constraint per cell due to pressure (F ). In the absence of an area term, a coupling
(perimeter) term will also provide this set of constraints.

� One constraint for every junction tension (E − E0),

What are the consequences of this counting for actual tissues? In the first instance, an
unjamming transition has been observed in airway epithelia around p∗0 [16]. Tissues at higher
p0, believed to be fluid, could instead be rigid due to the presence of higher order vertices /
rosettes. More subtle, but more relevant to development, are the ways tissue mechanics is an
integral part of shaping an embryo. Mechanical signalling and active dynamics refer to force
transmission and active response through the actomyosin network of each cell in an embryo.
This feedback between junction tensions and actomyosin concentration then controls the
local tissue response through oriented rearrangements (T1 transitions), cell shape changes,
divisions and ingressions [17, 18]. The active driving force in this soft active material is given
by the actomyosin-generated tension in the junctions itself, suggesting a rich and complex
interplay between active driving, rigidity and flow. To understand these materials at the
core of multicellular life, we will need to build on models [19, 20] that incorporate the rigid
mechanics and realistic active junction dynamics.
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