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As exemplified in leopard’s coat and zebra stripe, temporally stable and spatially inhomo-
geneous steady state patterns are ubiquitous in the animal body [1]. Manifestation of such
patterns is also a fundamental basis of embryogenesis, which constitutes a series of collective
symmetry-breaking events among effectively identical cells at the early stage of development.
In his seminal paper entitled “The chemical basis of morphogenesis,” Alan Turing put for-
ward a simple reaction-diffusion based mechanism, widely known as the diffusion-induced
instability or Turing instability, to account for the formation of biological patterns [2]. In-
homogeneous steady state concentration profiles of diffusible signaling molecules, termed
‘morphogens,’ was hypothesized to induce differential gene expressions across a collection
of cells and formation of biological patterns. Specifically, Turing proposed that interplay
between two types of morphogens, autocatalytic activators and inhibitors, diffusing across
the cells, can self-organize to generate spatial inhomogeneous periodic concentration profiles
of the morphogens.

In general terms without resorting to a specific model, the spatiotemporal dynamics of
N -interacting morphogens is explained using the reaction-diffusion equation with an appro-
priate boundary condition, ċ = f(c) + D ·∇2c, where c is the concentrations of morphogens,
c = c(r, t) ≡ (c1(r, t), c2(r, t), . . . cN(r, t)), f(c) ≡ (f1(c), f2(c), . . . , fN(c)) represents a set of
nonlinear functions of the concentrations c, and D is the diffusion matrix. The dynamical
properties of the solution c(r, t) at steady states are assessed by performing a stability anal-
ysis of a linearized equation around the fixed point c∗ that satisfies f(c∗) = 0. At c ' c∗+δc
(|δci/c∗i | � 1 for all i), the equation is linearized to:

∂tδc = J · δc + D · ∇2δc (1)

where J is the Jacobian matrix evaluated at c = c∗. It is expected that the solution δc(r, t)
is obtained as the sum of Fourier modes,

δc(r, t) ∼
∑
k

φke
λ(k2)teik·r (2)

where φk is the coefficient of each Fourier mode, and λ = λ(k2) is the roots of characteristic
polynomial of degree N ,

det
(
λI− J + k2D

)
= 0. (3)
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(i) The temporal stability is ensured for k = 0 when all the roots of the characteristic
polynomial det [λI− J] = 0 have negative real parts (Re(λi) < 0 for all i). (ii) The Turing
instability leading to a spatially inhomogeneous, periodic steady state pattern arises when at
least one of the roots has positive real part giving rise to unstable modes of wavenumber k.
The fluctuation in morphogen concentration that grows exponentially with time is eventually
balanced with the nonlinear terms in the equations [3].

As shown by Haas and Goldstein [4], for N = 2 with J =

(
fu fv
gu gv

)
and D =

(
du 0
0 dv

)
,

the conditions for temporal stability and Turing instability are straightforwardly determined
from the quadratic polynomial of λ as

fu + gv < 0 (4)

det J > 0 (5)

dvfu + dugv > 0 (6)

(dvfu + dugv)
2 − 4dudv det J > 0. (7)

with det J = fugv − fvgu. It is immediately clear (from Eqs.4 and 6) that the diffusivities
of two morphogens should differ from each other (du 6= dv) for Turing instability, and the
Jacobian matrix is also constrained to have a structure, such that fvgu < fugv < 0, i.e.,

J =

(
+ +
− −

)
,

(
+ −
+ −

)
,

(
− −
+ +

)
,

(
− +
− +

)
. Lastly, Eq.7 provides an inequality that the

ratio of two diffusivities, D2 = max (dv/du, du/dv) should satisfy, specifying the threshold
value D∗2,

D2 > D∗2 =



(√
det J +

√
det J− fugv
fu

)2

for dv/du > 1(√
det J +

√
det J− fugv
gv

)2

for du/dv > 1

(8)

For given values of the four elements of Jacobian matrix (fu, fv, gu, gv), which defines

R = max (|fu|,|fv |,|gu|,|gv |)
min (|fu|,|fv |,|gu|,|gv |) , the diffusive threshold D∗2 ranges over R ≤ D∗2 ≤ Dmax

2 (R) with

Dmax
2 (R)

[
= (R +

√
(R2 − 1))2

]
. By using randomly generated Jacobian matrices, Haas

and Goldstein showed that the probability of D∗2 smaller than R is low (P (D∗2 ≤ R) =

1−
∫ Dmax

2

R
P (D∗2)dD

∗
2 ≈ 0.03), indicating that the occurrence of Turing instability is unlikely

for the case of (N=2)-species systems if the diffusivities of two morphogens are similar [4].
Given that molecules with similar sizes are characterized with similar diffusivities, at least for
the case of 2-species morphogen systems the Turing instability or diffusion-induced instability
does not seem to be a viable mechanism to explain the origin of biological patterns.

The same type of stability/instability analysis shown above can be repeated for N = 3,
but with substantially increased algebraic complexity [4]. Without explicitly solving the
roots of polynomial, we can benefit from Routh-Hurwitz stability criterion that help us
judge whether all the roots of polynomials lie in the left half plane (Re(λ) < 0). The
temporal stability condition (i.e., Re(λi) < 0 for all i) for cubic polynomials (N = 3),
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λ3 + p1(k
2)λ2 + p2(k

2)λ + p3(k
2) = 0, is acquired if and only if p1(0) > 0, p3(0) > 0, and

p1(0)p2(0) − p3(0) > 0. For instability to occur and form spatial patterns, any of the k-
dependent inequalities, i.e., p1(k

2) > 0, p3(k
2) > 0, and p1(k

2)p2(k
2)− p3(k2) > 0, should be

violated over some range of k [5, 6]. For N = 4, λ4 +p1λ
3 +p2λ

2 +p3λ+p4 = 0, the stability
condition is p1 > 0, p1p2 − p3 > 0, (p1p2 − p3)p3 − p21p4 > 0, and p4 > 0. An analysis may
still be doable, but the algebraic complexity in identifying the stability condition increases
rapidly with N .

Incidentally, studying the condition for Turing pattern formation in N -species systems
withN � 1 is in essence mathematically equivalent to assessing the stability of large dynamic
systems comprised of many interacting components. In 1970s, Gardner and Ashby [7] studied
the stability of general dynamic systems by representing the corresponding Jacobian matrix
(A) with C percent of ‘connectance’ (non-zero elements chosen from N (0, 1)) using random
matrices. Namely, they assessed the stability of x(t) obeying the linear equation,

dx/dt = A · x (9)

by means of the numerical calculation of eigenvalues of randomly generated A. For such
systems with size N to be stable, all the eigenvalues must have the negative real parts.
They discovered that for N ≥ 10 and C ≈ 13 %, A matrices almost always have at least
one eigenvalue with non-negative real part, suggesting that the systems characterized with
13 % connectance undergoes a sharp transition from stable to unstable dynamic behaviors
at N = 10. May [8] later generalized Gardner and Ashby’s numerics-based conjecture and
provided the stability criterion explicitly based on Wigner’s random matrix theory with an
additional parameter, an average interaction strength α, the variance of random numbers to
be assigned to generate a random matrix,

α <
1

(NC)1/2
. (10)

This stability criterion suggests that weighted by the extent of connectance (C) there is a
critical size of the system, Nc(= 1/(α2C)) beyond which the system displays instability.

Motivated by May’s stability analysis for random matrix-based complex system, Haas
and Goldstein carried out exercises of generating N ×N random Jacobian matrices J from
N = 2 to N = 6 and numerically evaluating the value of diffusive threshold D∗N from the
discriminant obtained for N . They found that the probability of random J having a Turing
instability, P (D∗N ≤ R), increases with N as well as R and that the diffusive threshold is
gradually lowered with increasing N .

Although it has long remained elusive since the Turing’s proposal, recent experimental
demonstrations on biological pattern formation via diffusible signaling molecules seem to lend
support to Turing mechanism [9, 10]. Given that there are many molecular players during the
animal development, Haas and Goldstein’s theoretical work leading to the conclusion on the
reduction of diffusive threshold due to many morphogen species makes the diffusion-induced
mechanism of Turing instabilities more plausible.
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