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This paper generated some reaction solely based on its title, and the purpose of this
commentary is to discuss its actual content. As one could anticipate, the goal of Mingpu
Qin et al was to give a definite answer to a well-posed question whether the ground state of
the pure 2D Hubbard model with nearest-neighbor hopping t on a square lattice, and on-site
interaction U , is a superconductor. For this, Mingpu Qin et al studied a linear response to the
dx2−y2 pairing field and the pair-pair correlation function by combining two state-of-the-art
computational methods – constrained path auxiliary field Quantum Monte Carlo and density
matrix renormalization group. They obtained very similar results using both methods, which
allowed them to draw the conclusions with high degree of confidence. Simulations have been
done on rectangular lattices of size N = LxLy in cylinder geometry with periodic boundary
conditions along the y direction and open boundary conditions along the x direction They
varied the aspect ratios of the cylinders to make sure that the rectangular cells do not impact
their results.

The key message of this paper is that for U/t around 6−8 and doping 0.1 < x < 0.2, the
ground state is not a superconductor but rather has a stripe order. They demonstrated quite
convincingly that a superconducting order parameter decays exponentially at deviations
from the bonds, to which they applied a pairing field. The pair-pair correlation function
also decays exponentially. They analyzed the evolution of the amplitudes of stripe and
superconducting (pairing) orders upon varying the applied pairing field hp, and found that
at hp → 0, stripe order saturates at a finite value, while superconducting order vanishes. A
stripe order in the same range of parameters has been earlier reported in [1]. An earlier
study of the t−only Hubbard model in the same range of U and x (Ref.[7]) did find dx2−y2

superconductivity but didn’t analyze a possibility that it gets destroyed by a stripe order.
The authors wrote explicitly at the end of Introduction: ”We emphasize that our work

does not imply a general statement that there is no superconducting order anywhere in
the pure Hubbard model. Rather, our focus is on the nature of the pairing order in the
pure Hubbard model in the physically important parameter regime as a model for cuprate
superconductors.”
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Figure 1: Schematic phase diagram
of the repulsive t−only 2D Hubbard
model near half-filling. The abbrevi-
ations are Fermi liquid (FL), super-
fluid (SF), antiferromagnet (AFM),
and phase separation (PS). Borrowed
from Ref. [6]. In the notations used
here, SF is a superconductor, and PS
corresponds to stripe order.

In view of this last statement, I think it may be
useful for a reader if I try to place this work into a
broader context of superconductivity in a Hubbard
model with t− t′ hoping, at various dopings and var-
ious U/t. This issue has been studied by many (!)
authors (see, e.g. Ref. [2] and references therein),
and much progress has been achieved both analyti-
cally and numerically, using recent advances of the
computational tools

First, it is well understood that Hubbard repul-
sion is not an obstacle to superconductivity with gap
symmetry different from an ordinary s−wave. In
short, the pairing interaction get dressed by fermionic
particle-hole pairs, becomes coordinate-dependent,
and undergoes Friedel-type oscillations at large dis-
tances, i.e., it occasionally becomes attractive.

Second, there exist certain limits, where supercon-
ductivity can be analyzed rigorously by expanding in
a small parameter, although relevant energy scales
can be very small. One such limit is a small density
of electrons, 1−x� 1 (not to be confused with small
doping x away from half-filling). In this limit, one can use density as an expansion parameter
while keeping U/t arbitrary. The result is that the Hubbard model is a superconductor [5],
but the symmetry of the pairing state is not dx2−y2 . Rather, it is dxy at small t′/t and more
exotic g−wave at larger t′/t. Superconductivity in this limit is not caused by any pairing
boson and originates from a pure Kohn-Luttinger effect. Another is a weak coupling limit
U/t � 1. Here, the ground state is again a superconductor, but the pairing symmetry
depends on the electron density. Reasonably close to half-filling, it is dx2−y2 for all t′ > t
simply because the angle-dependent fermionic density of states peaks near the corners of the
Brillouin zone, where dx2−y2 order parameter is the largest. And the third limit is half-filling
at t′ = 0. Here, the ground state is an antiferromagnet, rather than a superconductor. This
holds for all U/t, except for very large ones, where the magnetic order becomes ferromagnetic.

Third, in a range of dopings/interactions, where the system behaves as a metal, dx2−y2

pairing is often rationalized as coming from the exchange of spin fluctuations, peaked at
or near (π, π) (this is particularly true for hole-like Fermi surface at a finite t′). However,
spin fluctuations are good for dx2−y2 pairing only in a paramagnetic phase. Once the system
develops an antiferromagnetic order, or some other order, which can be thought of as a
modification of antiferromagnetism, this order competes with superconductivity and can
eliminate it.

Fourth, at large enough U/t, electronic excitations become localized, and the system
becomes a Mott insulator. Magnetic order is compatible with the insulating state, but
superconductivity is not. By this argument, one should expect that superconductivity must
become weaker with increasing U and disappear above some doping-dependent U/t.

My take is that the results by Mingpu Qin et al fit into this general framework. One
way to understand a stripe order, which goes back to Shraiman-Siggia analysis [3], is to view
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it as a result of an instability of a spiral magnetic order at a finite doping. This is also in
line with Emery-Kivelson-Lin idea of phase separation [4]. By that token, a stripe order is
a competitor to superconductivity in the same was as an antiferromagnetic order. Given
that the ground state of the t−only model at half-filling is an antiferromagnet, it seems
natural to expect that a competing order does prevent superconductivity, even when this
order evolves from antiferromagnetism to stripe order. We illustrate it by Fig. 1, borrowed
from Ref.[6] At small U/t a competing order exists only very near half-filling, where particle-
hole susceptibility is singular, and dx2−y2 superconductivity does emerge at larger x > xcr,1.
However, in the t−only model, such pairing only holds at x smaller than some xcr,2. As U/t
increases, the range xcr,1 < x < xcr,2 shrinks, and eventually must disappear. Mingpu Qin
et al probed specifically dx2−y2 order, and came to a definite conclusion that it looses to a
competitive stripe order for U/t around 6− 8. At smaller U/t ≤ 4, they hinted that dx2−y2

superconductivity may develop, as diagrammatic Monte-Carlo studies suggest [5].
Mingpu Qin et al also discussed an interesting possibility of a co-existence of supercon-

ductivity and stripe order. They argued that for their parameters this does not happen.
Very recent variational Monte-Carlo study for U/t = 8 (Ref. [8]) confirmed the absence of a
co-existence and found a stripe order up to x ≤ 0.2. Mingpu Qin et al hinted that stripe and
dx2−y2 orders may co-exist for smaller U . This is an interesting question, which will certainly
be addressed in future studies.
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