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The past decade has seen growing interest in identifying universal aspects of non-equilibrium
dynamics in quantum many-body systems. Originally, this was motivated by the success of
cold-atom experiments in creating isolated systems evolving under simple local Hamiltoni-
ans. A key theoretical question is to explain how such isolated systems come to equilibrium
under their intrinsic unitary dynamics where the system is always in a pure state. This is
now understood as a process of ‘scrambling’: over time, unitary evolution encodes any local
non-thermal information about the initial state of the system into the global structure of
the quantum pure state. Such global information is inaccessible to local observables, since
degrees of freedom in any subsystem are entangled with those in the remainder of the system.

1

https://www.condmatjclub.org
https://doi.org/10.36471/JCCM_March_2021_02
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.205136
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.031009
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.224307
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.030505
https://journals.aps.org/prb/abstract/10.1103/PhysRevX.10.041020
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.104302


Figure 1: (a) Random unitary circuit (b) ‘Hybrid’ unitary-projective circuit.

A class of ‘random unitary circuit’ (RUC) models have proven especially useful in un-
derstanding essential aspects of such scrambling. In the simplest RUCs, time evolution is
described by a ‘brick wall’ circuit (Fig. 1a) in which each gate is a randomly chosen unitary
operator. In the spirit of random matrix theory, such models strip away inessential details
of the system except for (in this example) locality and unitarity, even going so far as to dis-
card deterministic evolution in the temporally random case. RUCs, and their modifications
to include conservation laws or to describe time-periodic (Floquet) evolution, have yielded
many insights into many-body chaos (see JCCM articles in October 2016 and June 2018),
and are now part of the standard repertoire of the professional quantum dynamicist.

In many ways, RUCs are also toy models of the ‘noisy intermediate-scale quantum’
(NISQ) devices that are the current state of the art in quantum computing laboratories. As
David DiVincenzo noted in this Journal Club (A Big Quantum Computer, JCCM October
2019), a condensed matter physicist might profitably view a NISQ device as an experimen-
tal platform o↵ering unprecedented ‘many-terminal’ control of several strongly interacting
quantum bits, with rather well-characterized interactions with their environment. As such,
one might expect that it might play a similar role in exploring non-equilibrium quantum
phases of matter as did the two-dimensional electron gas for their equilibrium counterparts.

However, a NISQ device has features not captured by purely unitary evolution. Quan-
tum information is typically lost when an evolving system interacts with its environment,
or is converted to classical information when measurements are performed and the results
recorded. Joint unitary time evolution of system and environment together is generically
non-unitary when viewed from the perspective of the system alone. Quantum information
theorists often describe the evolution of such open quantum systems in terms of a quan-
tum channel : a completely-positive, trace-preserving map M acting on the system density
matrix, which can be written in terms of Kraus operators Ki,

M[⇢] =
kX

i=1

Ki⇢K
†
i , with

kX

i=1

K†
i Ki = 1, (1)

where each Ki describes a distinct interaction between system and environment, and the label
ij denotes the information recorded by the latter about the former. Repeated application
of the channel defines a discrete time evolution of the system density matrix: after t time
steps, an initial density matrix ⇢0 evolves to ⇢t =

Pk
i1=1 . . .

Pk
it=1 Kit . . . Ki1⇢0K

†
i1

. . . K†
it
.

We can view this as a sum over ‘quantum trajectories’ Ki ⌘ Kit . . . Ki1 , where labeled by
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A class of ‘random unitary circuit’ (RUC) models have proven especially useful in un-
derstanding essential aspects of such scrambling. In the simplest RUCs, time evolution is
described by a ‘brick wall’ circuit (Fig. 1a) in which each gate is a randomly chosen unitary
operator. In the spirit of random matrix theory, such models strip away inessential details
of the system except for (in this example) locality and unitarity, even going so far as to dis-
card deterministic evolution in the temporally random case. RUCs, and their modifications
to include conservation laws or to describe time-periodic (Floquet) evolution, have yielded
many insights into many-body chaos (see JCCM articles in October 2016 and June 2018),
and are now part of the standard repertoire of the professional quantum dynamicist.

In many ways, RUCs are also toy models of the ‘noisy intermediate-scale quantum’
(NISQ) devices that are the current state of the art in quantum computing laboratories. As
David DiVincenzo noted in this Journal Club (A Big Quantum Computer, JCCM October
2019), a condensed matter physicist might profitably view a NISQ device as an experimen-
tal platform offering unprecedented ‘many-terminal’ control of several strongly interacting
quantum bits, with rather well-characterized interactions with their environment. As such,
one might expect that it could play a similar role in exploring non-equilibrium quantum
phases of matter as did the two-dimensional electron gas for their equilibrium counterparts.

However, a NISQ device has features not captured by purely unitary evolution. Quan-
tum information is typically lost when an evolving system interacts with its environment,
or is converted to classical information when measurements are performed and the results
recorded. Joint unitary time evolution of system and environment together is generically
non-unitary when viewed from the perspective of the system alone. Quantum information
theorists often describe the evolution of such open quantum systems in terms of a quan-
tum channel : a completely-positive, trace-preserving map M acting on the system density
matrix, which can be written in terms of Kraus operators Ki,

M[ρ] =
k∑

i=1

KiρK
†
i , with

k∑

i=1

K†
iKi = 1, (1)

where each Ki describes a distinct interaction between system and environment, and the label
ij denotes the information recorded by the latter about the former. Repeated application
of the channel defines a discrete time evolution of the system density matrix: after t time
steps, an initial density matrix ρ0 evolves to ρt =

∑k
i1=1 . . .

∑k
it=1Kit . . . Ki1ρ0K

†
i1
. . . K†

it
.

We can view this as a sum over ‘quantum trajectories’ Ki ≡ Kit . . . Ki1 , labeled by the
distinct ways i = {i1, i2, . . . , it} in which the environment could have interacted with the
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system. To understand the meaning of a quantum trajectory, we specialize to the case where
Ki implements a projective measurement with outcome i, begin with an initial pure state
ρ0 = |ψ〉〈ψ|, and rewrite ρt as an ensemble of pure states:

ρt =
∑

i

P (i)ρi, with ρi =
Ki|ψ〉〈ψ|K†

i

〈ψ|K†
iKi|ψ〉

and P (i) = 〈ψ|K†
iKi|ψ〉. (2)

Each trajectory thus yields a normalized pure state Ki|ψ〉/‖Ki|ψ〉‖ with a probability given
by the Born rule for the sequence of measurement outcomes i. One can view the measure-
ments in two ways: as true measurements, recorded by an experimentalist, in which case
the pure state generated by a trajectory is physically relevant, and can be accessed by ‘post-
selecting’ the appropriate measurement outcomes; or, as a fictitious mathematical device to
map mixed state dynamics to an average over pure states.

The highlighted papers focus on ‘hybrid circuits’ of the form shown in Fig. 1b, where
RU evolution is punctuated by projective measurements of qubits with rate p. Such circuits
are more realistic models of NISQ devices with the simplest possible, measurement-only de-
viations from unitary dynamics. They focus on a class of questions that can be motivated
as follows. If measurement outcomes are discarded, at late times the combined unitary-
projective evolution produces for any p > 0 an ‘averaged’ density matrix, a thermally mixed
state of the system entangled with its environment. Now, suppose instead that the envi-
ronment is ‘monitored’ by recording the outcomes. This produces, as discussed above, an
ensemble of pure states that appear with probabilities given by the Born rule. We can now
reverse the order of the ensemble average and the entanglement calculation: first compute
the entanglement of the pure state generated by an individual trajectory and then either av-
erage over trajectories using Born probabilities or post-select on the outcomes to consider a
single trajectory or subset of trajectories. In the absence of measurements (p = 0), evidently
there is a single trajectory producing a volume-law entangled state due to scrambling. When
measurements are included (p > 0) and their outcomes recorded, how does the entanglement
of pure states in the ‘trajectory ensemble’ behave? Does it remain volume-law, or do pro-
jective measurements arrest unitary entanglement growth? If the latter, does any non-zero
measurement rate destroy volume-law behaviour, or is it robust up to some critical rate pc?

The first three recommended papers, which appeared more or less simultaneously, explore
the question of whether such an entanglement transition exists: the first two papers proposed
and found a transition, while the third paper concurred while raising a qualitative argument
for why such a transition might be prima facie surprising. This puzzle was resolved by the
fourth recommended paper, which linked the transition to a change in the quantum error-
correcting properties of the hybrid circuit, a theme expanded upon in the fifth paper that
connected it to the ability of the hybrid circuit to ‘purify’ initially mixed states. The sixth
paper (and parallel work by the authors of the fourth), introduced replica techniques that
map the problem to a classical statistical mechanical model, allowing them to apply the
methods of conformal field theory to address critical properties of the transition.

The paper by Li et al primarily studies a class of ‘Clifford’ circuits built from commuting
stabilizer operators. This allows efficient simulation of large systems (N & 29 qubits), which
would be unfeasible for a generic circuit. The authors used such simulations to identify two
distinct phases: a ‘weak measurement’ phase that retains the late-time volume-law entangle-
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ment of the measurement-free evolution, and a ‘strong measurement’ or phase characterized
by area law entanglement, where measurements prevent the growth of entanglement, analo-
gous to the ‘quantum Zeno effect’. They also began to explore properties of both phases and
the transition within the Clifford setting. They also suggest that many features persist away
from the Clifford limit, both by reproducing the two phases in small (N = 16) Haar-random
circuits and by arguing that both Haar-random and Clifford circuits are unitary 2-designs,
i.e. the averages of simple observables over both these types of random circuits approximates
those over the full unitary group on n qubits, U(2n).

Skinner et al take a complementary perspective, studying generic circuits with a simplified
entanglement measure: the ‘Hartley’ or zeroth Renyi entropy S

(0)
A , which is related to the

representability of the state as a tensor-network. Their analysis mapped the area-vs.-volume-
law question to one of distinct late-time scalings of the growth of entanglement between two
halves of an infinite system, i.e. of saturation (S

(0)
A (t) ∼ t0) vs. ballistic growth (S

(0)
A (t) ∼ t).

Since it weights all eigenvalues of ρA equally, S
(0)
A is viewed as somewhat unphysical. However,

its utility is that it is exactly computable: it saturates an upper bound on S
(n)
A in terms of

the minimal number of cuts required to disconnect the degrees of freedom in A from those
in Ā in the spacetime circuit (cf. Fig. 1b) representing the time evolution of the system.
Measurements change this ‘minimal cut’ problem by breaking bonds, so that it now maps to
‘first passage percolation’: finding an optimum path in a disordered medium. This approach
reveals a sharp transition: at low p, broken bonds are sufficiently rare that the minimal
cut crosses O(t) unbroken bonds, so S

(0)
A (t) ∼ t; for p > pc, broken bonds percolate, the

minimal cut lies largely in the broken region, and S
(0)
A (t) ∼ t0. The percolation picture

strongly suggests that pc is indeed finite, and that a robust volume-law phase survives a finite
measurement rate in generic circuits. The authors also discuss critical scaling properties, and
reason that the results for S

(0)
A should be largely immune to details of trajectory averaging

or post-selection. Finally, they numerically confirm that a transition also occurs in ‘more
physical’ n > 1 Renyi entropies, though with a distinct pc, and explore critical scaling.

Notably, both the first two papers give an intriguing answer to the final question posed
above: weak measurements appear insufficient to suppress a chaotic volume law. In the third
recommended paper, Chan et al eventually also identify two distinct phases as a function
of the measurement rate. However, en route to doing so, they flag (especially in an early
preprint) a puzzling paradox: local unitary dynamics can only entangle a region A with the
rest of the system at its boundaries, while measurements can act anywhere inside A. So
it appears that hybrid circuits can only inject an area-law’s worth of entanglement in their
unitary step, while removing a volume-law amount through measurement. From this logic, it
seems that the volume law phase must always lose this ‘battle of rates’, and therefore that the
critical strength for area law onset is at pc = 0, corresponding to arbitrary weak measurement.
This is indeed seen in toy models of free fermions [1] and ‘Bell-pair’ dynamics, but is at odds
with the existence of a robust weak-measurement volume-law phase in Clifford circuits and
with the percolation picture. While Chan et al conclude that the former examples are special
cases, the paradox nevertheless challenges the sort of intuitive scaling arguments beloved of
physicists suspicious of overly formal computations.

An elegant resolution to this puzzle is provided in the paper by Choi et al, who linked
the transition to a change in the quantum error-correcting properties of the circuit. They
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consider a simple toy model where two N -qubit systems A and B are entangled by sharing
γN Bell pairs, and studied how measuring pN qubits in A changes the entanglement. For
N � 1, by improving a bound provided by the decoupling theorem of quantum information
they are able to show that the measured qubits in A are effectively decoupled from those in
B as long as p < 1−γ; measuring a finite fraction of qubits does not affect the entanglement
between A and B as long as it lies below this threshold. They make the crucial point that the
robustness of the volume-law phase lies in the ‘hiding’ of information by unitary dynamics in
a manner inaccessible even to an extensive set of projective measurements, a feature of good
quantum error correcting codes. They conjecture that the transition also marks a qualitative
change in the ability of the circuit to reliably transmit quantum information.

This theme was picked up by the fifth recommended paper by Gullans and Huse who,
instead of taking the initial state to be pure, asked whether evolution under the hybrid cir-
cuit is purifying, i.e. drives an initially mixed density matrix into a pure state. The intuitive
picture is that as outcomes are monitored, there are increasingly fewer accessible pure states
consistent with the measurement record and intermediate dynamics, leading eventually to
purification. However, as they note, this naive expectation is contradicted by the existence
of quantum error-correcting codes protected against extensive measurements, suggesting the
existence of a ‘purification transition’ as a function of measurement rate. They accordingly
map the volume-to-area law entanglement transition to one from a “mixed” phase where
the purification time diverges exponentially with system size, to a “pure” phase with a con-
stant purification rate in the thermodynamic limit. Consequently, at late times, an initially
maximally mixed state has a nonzero entropy in the former phase, but becomes pure, and
area-law entangled, in the latter. They then generalize the idea of a purification transition to
a transition in the quantum channel capacity of the open-system dynamics, which quantifies
its ability to transmit quantum information in an error-corrected fashion. In this setting,
the critical measurement rate is a ‘threshold’ above which the channel no longer serves as a
reliable conduit for quantum information. Simultaneously, Choi et al extended their results
to prove a direct relationship between a hybrid circuit’s steady-state entanglement entropy
production and its channel capacity, offering a complementary perspective on the latter.

As two robust phases are seen to exist, a natural next step is to study the transition
between them — the focus of the final recommended paper (and also the first paper in
[4], which appeared simultaneously). Skinner et al draw parallels between the measure-
ment transition and previous work on random tensor networks [2] by authors of the final
recommended paper. As Jian et al show, replica techniques used to study random tensor
networks can be fruitfully applied to the measurement transition, allowing it to be mapped
to an effective classical statistical mechanical model. The calculation of a Renyi entropy S

(n)
A

becomes one of determining the free energy cost of a domain wall in the model associated
with changing the boundary conditions in the region of A. Changing p tunes the effective
temperature of the classical model, driving it from an ordered phase at small p where do-
main walls are costly leading to a volume law (SA ∼ LA), to a disordered one at large p
where domain walls are cheap and proliferate, corresponding to an area law (SA ∼ L0

A). This
calculation becomes especially tractable in the limit of infinite-dimensional on-site Hilbert
space, where it maps to a problem of 2D percolation as in the model studied by Skinner et
al. More importantly, the mapping provides a crisp argument that the measurement-induced
transition is controlled by a conformal field theory — albeit a non-unitary one — and there-
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fore has a dynamical critical exponent z = 1, i.e. length and time scale similarly. Similar
results were reached in parallel by Bao et al [4] , who introduced a different replica scheme
involving ancilla qubits coupled to a measuring device, and suggested a distinct probe of the
transition in terms of ‘Fisher information’. They also clarified that seeing a transition in the
entanglement entropy requires a perfect measurement record: it is lost for any non-vanishing
probability of unregistered measurements.

Besides the error-correction picture, there are other perspectives on the ‘meaning’ of
the entanglement transition that are useful to note. The viewpoint used for most of this
commentary most closely matches the situation in which the experiment actually records all
outcomes that label a trajectory, in which case one can directly diagnose the transition by
computing entanglement. Even if all outcomes are recorded, one could instead use them in
conjunction with a classical computer and details of the unitary evolution to infer the state
prepared by the circuit. Yet another picture is that the outcomes are not recorded, and
the trajectories are an artifice introduced to simulate open-system evolution. As noted by
Skinner et al, in the latter two settings, the transition is marked by the emergent intractability
of identifying the prepared state or simulating the evolution as we enter the volume law phase.

Since these initial papers, a flurry of follow-on studies have explored diverse aspects of
hybrid measurement-projective dynamics. These include the proposal of new dynamical
phases enabled by measurement [3]; further explorations of both phases and criticality [4];
mappings to free theories [5] and mean-field-like approaches [6]; studies of other non-unitary
evolutions e.g. in non-Hermitian systems [7], measurement-only protocols [8], or ‘spacetime
duals’ [9] of unitary circuits; and a deepening of the links to error correction and channel
capacity [10]. However, many of these proposals involve significant experimental overhead,
such as post-selection, making them challenging to implement.

It is useful to step back and consider broader ramifications of this line of investiga-
tion. The perspective it gives on open quantum systems is rather distinct from traditional
Lindblad dynamics, illustrating that NISQ devices, by enabling direct access to quantum
trajectories, force us to consider open-system evolution in a new light. The prospect of
using post-selection to prepare unconventional entangled steady states is also a promising
medium-term goal, as is the broader question of understanding and classifying the possibil-
ities enabled by such approaches. The practical utility of the error-correcting properties of
hybrid circuits, and in particular, the extent to which there are efficient approaches to using
them to encode and decode quantum information, remain largely unexplored. Attempts to
clarify this have stimulated the application of statistical mechanical ideas to the study of
quantum error correcting codes. Such approaches have been historically fruitful, for instance
in the practical problem of distinguishing typical and worst-case computational complexity.
It is possible that by sharpening the understanding of the interplay of locality, error cor-
rection, and noise, these techniques may play a similarly useful role in understanding the
limitations and possibilities of near-term quantum technologies and the phase structure of
non-equilibrium quantum matter. In a sense, the surge of theoretical work has provided an
embarrassment of answers; the pace of experimental progress suggests that it may not be
long before appropriate questions emerge.
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