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Generally speaking, it’s much easier to make a plastic deformation in a crystal than one
might expect. Plasticity is the degree to which a material deforms permanently under stress,
and in a crystal this involves causing one lattice plane to slip with respect to another. Thus,
a naive estimate for the critical force required to make a plastic deformation would involve
calculating the cumulative force of the atomic interactions between the two neighboring
planes. But in fact the necessary force is much smaller because of the presence of dislocations:
defects in the crystal at which a perpendicular plane of atoms comes to an end. These
dislocations can glide along the slip direction, providing easy paths to plasticity (see Fig. 1).

A common analogy for dislocation-mediated plasticity is to imagine the process of moving
a heavy rug across a floor. This process requires much less applied force if one simply makes
a wrinkle in the rug and pushes it from one end of the rug to another. It is the analogous
dislocation glide process that enables, say, the puny human arm of a blacksmith to mold the
shape of a hot piece of iron: the heating and hammering induces dislocations in the iron
that can be easily pushed around.

Figure 1: (Above) Plastic deformation of a crystal through dislocation glide (from [1]).
(Below) Moving a heavy carpet by pushing a wrinkle (from [2]).

A key materials science question, then, is how much shear stress must be applied in order
to cause dislocation glide. Equivalently, one can ask about the corresponding energy barrier.

1

DOI:10.36471/JCCM March 2021 03

https://www.condmatjclub.org
https://doi.org/10.36471/JCCM_March_2021_03


A tantalizing question is whether this energy barrier is necessarily finite, or whether one
could imagine a crystal for which dislocations glide freely with no energy barrier at all.

The first attempt to address this question came from Peierls, who in 1940 described the
elastic stresses surrounding a dislocation using continuum elasticity theory [3]. Of course, in
the continuum description there can be no energy barrier for dislocation glide, since without a
discrete atomic lattice the elastic energy does not depend on the dislocation position. Peierls
could therefore make only a general estimate of the associated energy barrier, but the formula
he presented is now a canonical result in engineering textbooks, known as the “Peierls stress.”
(Or, following later refinements by Nabarro [4], as the “Peierls-Nabarro barrier.”) The exact
description of the Peierls-Nabarro barrier has received occasional updates in the 80 years
since [5].

In the recommended paper [6], the authors reconsider the origin of the Peierls-Nabarro
barrier from a topological perspective. They show that, at least in 2D crystals, the Peierls-
Nabarro can be interpreted as an energy gap between topologically distinct sectors, and
therefore that it must be finite as an inevitable consequence of the crystalline order.

In some sense adopting a topological perspective on this problem is natural, since a
dislocation itself is a topological object (with a “topological charge” defined by the corre-
sponding Burgers vector). But the authors’ result proceeds not so much from the topology
of the dislocation as from the topology of the ground state manifold of the crystal itself.

The paper starts by considering the simplified case of a smectic state, for which the
ground state has a layered modulation of density ρ = ρ0 + δρ cos Φ. The amplitude δρ is the
order parameter of the smectic phase, while the phase field Φ = k · x + φ (where k is the
wave vector of the density modulation) describes the oscillation of density in space. In the
ground state of the smectic state, the phase field is characterized by only two variables: the
phase φ of the density oscillation and the orientation angle θ of the constant-density planes
(see Fig. 2).

The physical system is 2π-periodic in the phase φ, but only π-periodic in the orientation
θ, with the twist that (θ=0, φ) is equivalent to (θ=π, −φ). Consequently, the space of angles
(θ, φ) that may be adopted by the ground state (the ground state manifold) has the topology
of a Klein bottle.

The ground state manifold admits two basic types of topological defects: dislocations
and disclinations. Dislocations are points in the phase field around which any closed path
involves a winding of the phase by 2π. Disclinations are points at which the orientation
angle abruptly flips, so that a closed path around a disclination involves a jump from (θ, φ)
to (θ ± π,−φ). In order to establish the topological inevitability of the Peierls-Nabarro
barrier, the authors show two things:

1. Disclinations can reside only at specific values of the phase (φ = 0 or φ = π). Otherwise
either the density ρ becomes discontinuous, or the order parameter δρ must vanish.

2. A dislocation can always be decomposed into two opposite disclinations. This can be
shown by smoothly deforming the path around a dislocation, as shown in Fig. 2.

Together, these two conditions imply that dislocations cannot move continuously, since
they are made of disclinations and disclinations are pinned in place (by an energy barrier).
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Figure 2: (Left) The modulation of density in the smectic ground state (dark and light
colored regions), showing the orientation angle θ and the phase φ. (Middle) The ground
state manifold in the space of φ and θ, with the boundary conditions indicated by black
arrows. Tracing a path around a dislocation involves a 2π winding of the phase φ. A path
around a disclination involves a ±π change in orientation angle θ. (Right) The path around
a dislocation can be continuously deformed until it consists of two opposite disclinations.
Adapted from [6].

Only a vanishing of the order parameter δρ, which would correspond to melting of the crystal,
would enable dislocations to glide freely.

After establishing the topological origin of the Peierls-Nabarro barrier for the smectic
case, the authors analyze the case of 2D lattices, which have not one phase φ but two. They
describe the corresponding ground state manifolds for each of the five Bravais lattices in
two dimensions, and catalog the allowed locations (in the phase field) of disclinations. The
upshot of this analysis is the same: that dislocations are inevitably composed of disclinations,
which can reside only at specific locations in the phase field, and so a Peierls-Nabarro barrier
is inevitable. But by defining defects in terms of the phase field, the authors’ description
provides a convenient and simple categorization of disclinations, which for some lattice types
can be hard to draw or intuit in terms of atomic positions alone.

In one sense, there are no obvious new phenomena implied by the paper, since its purpose
is only to recast known concepts (e.g., the Peierls-Nabarro barrier) in a new light. But it
is invigorating to see this classic result rephrased in topological language, and derived using
only the topology of the ground state manifold. The authors’ line of thinking may spark
more insights related to topological defects in two-dimensional systems, or even in three
dimensions (where defects are line-like and can tangle with each other).
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