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The fractional quantum Hall effect and superconductivity are unnatural allies: the former
thrives on strong magnetic fields whereas the latter generally abhors them. Negotiating their
successful merger, however, promises transformative payoff. Namely, theory predicts that
fractional quantum Hall /superconductor hybrids can host ‘parafermionic’ generalizations [1]
of Majorana zero modes that have been intensely pursued over the last decade. The high-
lighted paper by Giil et al. establishes a milestone toward parafermions by unambiguously
demonstrating induced superconductivity in fractional quantum Hall edge states. To put
their results in proper context let us first address three questions: Why parafermions? How
exactly can one engineer parafermions? And how might they be detected experimentally?

Majorana zero modes already comprise an enticing target for physicists seeking novel
quantum phenomena with technological applications. In topological superconductor plat-
forms, they represent novel zero-energy degrees of freedom that bind to defects such as
domain walls or vortices, and are formally described by Hermitian operators v, satisfying

73 =1, YW = —Ya (for a #b). (1)

A well-separated pair of Majorana zero modes furnishes a single fermionic two-level system
whose occupation can not be determined via local measurements (neglecting exponentially
small effects). Arrays of Majorana modes accordingly generate a set of locally indistinguish-
able ground states that can encode qubits with built-in resilience against local environmental
noise. Moreover, braiding the defects binding Majorana zero modes enacts rigid rotations
within the ground-state manifold—i.e., they exhibit non-Abelian statistics—yielding intrin-
sically fault-tolerant quantum gates. What more could one ask for? Computational univer-
sality requires (for instance) a Hadamard gate, 7/8 phase gate, and two-qubit entangling
gate, and unfortunately Majorana braiding produces only the first of these [2]. Supplement-
ing braiding with measurement additionally enables an entangling gate yet still falls short
of universality. In search of fully fault-tolerant universal quantum computing hardware, we
must look beyond Majorana platforms.
Parafermion zero modes are Zy Majorana generalizations described by unitary operators
«; that obey
al =1, a, = e v na—b) oo, (for a # b); (2)
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note that the N = 2 limit reduces to the Majorana properties from Eq. (1). Like their Majo-
rana cousins, parafermion arrays span degenerate, fault-tolerant qubit states manipulatable
by non-Abelian braiding operations. Parafermion braiding is richer, however, compared to
the Majorana case and supplies an entangling gate without the need for measurement. While
even there braiding remains computationally non-universal, two-dimensional parafermion
arrays form natural building blocks for engineering so-called Fibonacci anyons, for which
braiding does provide a universal gate set [3]. Long-term fault-tolerant quantum computing
applications thus partially answer the ‘Why parafermions?’ question.

Further motivation derives from the inherent beauty in how parafermions emerge. Typ-
ically fractional quantum Hall states are viewed in terms of an Abelian/non-Abelian di-
chotomy depending on the braiding properties of the constituent anyons. For instance,
Laughlin states belong to the former category because they host anyons with Abelian frac-
tional statistics, whereas the Moore-Read state exemplifies the latter and features anyons
displaying non-Abelian statistics. But quite stunningly, even the simplest Abelian fractional
quantum Hall phases contain seeds of non-Abelian anyon physics that can be harvested via
the introduction of certain kinds of defects.

Imagine carving a narrow trench into a Laughlin state, generating a set of counterprop-
agating fractionalized edge states within the material as depicted in Fig. 1(a). These modes
can acquire a pairing gap in the presence of proximity-induced superconductivity. The result,
however, is far from an ordinary superconductor. Cooper pairs descend from conglomerates
of minimal e* fractional charges supported by the Laughlin state, and the induced pairing
catalyzes condensation of charge-2e* composites! The trench can thereby soak up fractional
charges into the condensate without changing the system’s energy—implying ground-state
degeneracy. This degeneracy is captured by parafermion zero modes that reside at the left
and right ends of such a one-dimensional fractionalized superconductor® [4, 5, 6, 7]; see
Fig. 1(a). Physically, the parafermion operators add fractional charges to the trench end-
points, cycling the system through degenerate configurations allowed by the condensate.

Signatures of parafermion zero modes appear in electrical transport. In the geometry of
Fig. 1(b), fractional quantum Hall edge states native to the outer sample boundary serve as
leads that interrogate the parafermion mode on one side of the trench. At low energies the
parafermion converts an incident negatively charged —e* fractional edge quasiparticle into an
outgoing +e* fractional charge with unit probability, with the deficit —2e* charge absorbed
by the nontrivial condensate. This remarkable phenomenon can be viewed as perfect (chiral)
crossed Andreev reflection,’ and manifests as a sign reversal of the electric potential for the
outgoing edge states compared to the incoming edge-state potential.

Figure 2(a) shows the quantum Hall-superconductor hybrid device studied by Giil et al.
The central rectangular area, composed of a graphene-based heterostructure, hosts quantum
Hall states that are proximitized by a thin grounded NbN superconductor (blue region); note
the similarity to the setup sketched in Fig. 1(b). The NbN superconductor benefits from
both a high critical field and appreciable spin-orbit interaction, the latter of which is crucial
for inducing superconductivity into spin-polarized quantum Hall states. Contacts along the

*Replacing the Laughlin state by a v = 1 integer quantum Hall phase yields Majorana modes instead of
parafermions.

T Alternatively, the phenomenon is a fractionalized, chiral counterpart of (gasp!) the quantized zero bias
conductance predicted for Majorana zero modes.
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Figure 1: (a) Fractional quantum Hall-superconductor architecture hosting parafermion zero
modes. (b) Perfect crossed Andreev reflection mediated by a parafermion zero mode: an
incident —e* fractionally charged edge excitation converts, with unit probability, into an
outgoing +e* fractional charge. The sign of the edge potential correspondingly flips for the
outgoing edge mode.

periphery enable extraction of various voltages along the edge. Most interesting here are the
potentials for the incoming and outgoing edge modes, respectively denoted V' and Viag by
the authors. These quantities are used to define a resistance Roar = Voar/I (I denotes the
injected current) along with a ratio pcar = —Vear/V. When incoming edge quasiparticles
preferentially reverse their charge upon passing the superconductor, indicating a propensity
for crossed Andreev reflection, Voar becomes negative and therefore so does Rcag. In this
regime, pcar can be interpreted as a crossed Andreev reflection probability—which as noted
above tends to unity at low energies in the presence of parafermion zero modes.
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Figure 2: (a) Device studied by Giil et al. (b) Data illustrating the low-temperature onset of
crossed Andreev reflection, revealed through negative Roagr resistances, in both the integer
and fractional quantum Hall regimes.

These measurements reveal a wealth of interesting, and surprising, results. Figure 2(b)
illustrates Giil et al.’s main finding: as temperature is lowered, negative Rcar resistances
develop for a series of integer and fractional quantum Hall states—clearly evidencing induced



superconductivity in both regimes. The corresponding pcar ratios remain much smaller
than one in all cases but can approach respectable values of order 10%. Remarkably, for
the integer quantum Hall states, pcar saturates at low temperatures to values that are
nearly independent of filling factor v from v = 1 all the way to v = 6. This observation
is counterintuitive: One might have expected nontrivial filling-factor dependence based on
the difference in spin polarization for even vs odd v, combined with the nontrivial spatial
distribution of integer quantum Hall edge states (e.g., edge modes located farther from the
superconductor would naturally inherit a weaker superconducting proximity effect). Instead
it appears as if the superconductor indiscriminately swallows up all incident integer quantum
edge states and spits out negated charges on the other end with uniform probability. In the
fractional quantum Hall regime the pcar probabilities are also perplexing. For v = 2/3,
Pcar Saturates at low temperatures to a similar value as for the integer states, whereas for
v =1/3 and 2/5, pcar continues to increase down to the lowest accessible temperatures.
While the relation of these results to parafermions is presently uncertain, a more general
message is clear: Two classic problems—superconductivity and the fractional quantum Hall
effect—have now been successfully integrated, opening up a fascinating frontier in strongly
correlated electrons. The puzzles uncovered by Giil et al. provide welcome challenges for
theory as the field progresses towards definitive experimental realizations of parafermions.
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