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A random walker during time t moves distance that scales as t1/2. This critical exponent
of ν = 1/2 shows up in innumerable variety of circumstances in physics, sometimes in
disguise, such as, e.g., the decay of probability distribution for the classical gambler’s ruin
problem (first passage time distribution) as ∼ t−3/2 is in fact ∼ t−(2+d)ν .

Kardar-Parisi-Zhang model of a growing surface gives the most widely known example of
fundamentally different and independent scaling ∼ t2/3 (see, e.g. textbook [1, section 9.6]).
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Figure 1: Random walk (in red) en-
circling an obstacle of a large ra-
dius R with a fixed winding number
(in this illustration 1). The random
walker deviates from the surface of
the obstacle by a small distance ∆.

In the recent series of papers [2, 3, 4, 5], S.Nechaev
and co-authors suggested an unexpected and possi-
bly deep mathematical connection between these two
realms. Specifically, they considered the problem of
a random walk on the plane outside of an excluded
round disk conditioned on returning back to the start-
ing point after specified time t and making exactly
one (or any specified larger number) of turns around
the obstacle. This is illustrated in the Figure. A
similar problem was considered also independently by
Meerson and Smith [6], with a similar results. In the
limit when obstacle radius R is much larger than R0,
root mean square of the distance that random walker
would have traveled in the given time t in a free plane
without obstacles, the trajectory of the random walk
is strongly stretched by the condition to wind around
the obstacle. It was found in the papers [2, 3, 4, 5, 6]
that the walk trajectory is in this case localized in a
narrow strip of the width

∆ ∼ R
4/3
0 /R1/3 ; (1)

in other words, ∆ ∼ t2/3 – KPZ-like scaling. Note that ∆ � R0 � R.

1

DOI:10.36471/JCCM April 2021 03Journal Club for Condensed Matter Physics 
https://www.condmatjclub.org

https://www.condmatjclub.org
https://doi.org/10.36471/JCCM_April_2021_03


The works [2, 3, 4, 5] (unlike [6]) are formulated mostly in terms of a ring polymer
stretched around a disk in the limit when disk circumference is large for the given polymer
length. Present writer found this terminology quite confusing, because polymer chains, unlike
random walks, have inherently limited extensibility, and at strong stretching their similarity
with random walks breaks down (see, e.g., [7]). For this reason, when polymer length is
compared to 2πR, my temptation is to think of a polymer with a large, but finite number of
segments N . In fact, I think that the result (1) is completely unrelated to this issue of finite
extensibility, which can be understood by the following simple argument.

In polymer language, the width ∆ over which the chain is delocalized must result from
the minimization of the following free energy:

F

kBT
∼ Nb2

∆2
+

(2π(R + ∆))2

Nb2
. (2)

Here the first term describes entropy penalty for confining chain within the strip of the
width ∆, while the second term arises from entropy penalty for stretching the chain. The
only slightly non-trivial fact here is that chain is stretched not just to the circumference
length 2πR, but to a slightly longer length about 2π(R + ∆). Note that both terms are
written for a purely Gaussian chain, b being the monomer size, and no finite extensibility
corrections are taken into account. Minimization of this free energy (in case ∆ � R) yields
the result ∆3 ∼ N2b4

R
which is identical to (1), modulo notations.

Of course, for the benefit of people thinking in terms of random walks and not poly-
mers, the above argument is easily reformulated: the statistical weight to be maximized is

exp
[
−Dt

∆2 − (2π(R+∆))2

Dt

]
, where D is the diffusion coefficient of the random walker, and t is

the time until trajectory closure.
Given that the result (1) arises from the regular random walks considerations, and,

therefore, its scaling appears to be yet another disguise∗ of the usual random walk exponent
ν = 1/2, the mathematical links of this scaling to the realm of KPZ become even more
tantalizing.
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∗In fact, 2
3 = 2ν+1

ν+1 ν.
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