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New material platforms have a history of opening new chapters in condensed matter
physics, with cuprates, pnictides, and Moire heterostructures providing some of the most
storied examples. Recently a new class of materials has entered the fray. These are the
quasi-two dimensional, exfoliable materials AV3Sb3, where A is an alkali atom (K, Cs, Rb).
Each layer consists of a Kagome net of V atoms coordinated by Sb, and with additional Sb
and alkali atoms sandwiched between Kagome layers. The structure is illustrated in Fig. 1a.

In the past six months these materials have been the subject of a host of papers both
experimental (the featured paper, and also [1, 2, 3, 4, 5, 6, 9, 7, 8]) and theoretical [10, 11, 12,
13, 14] (this is not a complete list). The non-interacting (high temperature) bandstructure
has been calculated in DFT and measured in ARPES - an idealized version of the Fermi
surface that is believed to obtain is shown in Fig.1b. It consists of a hexagon inscribed
within the Brillouin zone, plus additional Fermi pockets at the Γ point and on the ΓM line.
The inscribed hexagon has two special properties - it displays a high degree of nesting, and
the corners of the hexagon (the M points) are saddle points of the dispersion giving rise
to a (logarithmic) Van Hove singularity in the density of states. Both the nesting and the
Van Hove singularity are expected to greatly favor formation of correlated states, and indeed
interaction driven instabilities of the hexagonal Fermi surface have been extensively discussed
in the theory literature [15, 17, 16], and a multitude of states including chiral superconductors
[15] and chiral insulators [16] have been proposed. Now, finally, experiments can explore this
scenario.

Experiments indeed reveal a cornucopia of ordered phases. A complete survey of the
experimental literature is beyond the scope of this commentary, but I will summarize below
what I see as the key results. All these materials (A = K,Cs,Rb) exhibit charge density wave
(CDW) order at a critical temperature in the range around 80−100K, and superconductivity
(SC) with a critical temperature on the order of 1K. Scanning tunneling microscopy (STM)
measurements and X-ray spectroscopy indicate that the CDW order is ‘hexagonal,’ with
ordering at three distinct wavevectors (Fig. 2a), and with the ordering wavevectors being
equal to the nesting vectors of the hexagonal Fermi surface. In addition, the three wavevector
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Figure 1 Superlattice modulation observed via topographic imaging. a, Crystal structure of KV3Sb5 
from 3D view (left) and top view (right). b, Cleaving surfaces of KV3Sb5 illustrated from the side view of 
the crystal structure. c, Topographic image of a surface step edge, containing both K and Sb surfaces. The 
lower panels show atomically resolved topographic images of K hexagonal surface and Sb honeycomb 
surface, respectively. The black lines denote the underlying kagome lattice. d, A topographic image of a 
large Sb surface showing a 2×2 modulation. e, A topographic image of a large Sb surface taken at 80K 
showing absence of the 2×2 modulation. f, Fourier transform of the Sb topographic image, showing the 
ordering peaks and Bragg peaks. g, Fourier transform of the Sb topographic image taken at 80K, showing 
only Bragg peaks. 
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Figure 4. Impact of unconventional charge order on the electronic structure. a, Schematic of Fermi 
surfaces in the hexagonal Brillouin zone at kZ = 0. The wave vectors of the unconventional CDW are 
indicated, as well as the location at which Dirac nodal lines slightly above the Fermi energy cut the kZ = 0 
plane. The V dxy Fermi surface, which is nested by the ordering wave vectors, has weight on distinct 
sublattices at each M point, giving rise to the sublattice interference mechanism. b, Two-dimensional model 
calculation of the impact of unconventional chiral CDW on the V dxy bands. The orange (blue) density of 
states is without (with) the CDW order parameter, which splits the van Hove singularity. Inset image shows 
the chiral charge pattern and associated orbital currents. The shaded area in the inset marks the 2×2 unit 
cell. c, Effective band structure of the nodal lines formed by the dxz/dyz orbitals of V at kz = 0 after 2×2 
folding of the Brillouin zone. d, The introduction of a chiral time-reversal breaking CDW order parameter 
opens a topological gap around the Fermi-level. This gap gives rise to a non-zero Berry curvature, the 
integration of which produces a giant anomalous Hall effect for the bulk material. 
 
 
 
 
 
 

 

 

 

 

Figure 1: (a) An illustration of the material structure of AV3Sb3. The low energy electron

states are believed to live largely on the V atoms. (b) An illustration of the idealized Fermi

surface. The largest Fermi pocket consists of a single hexagon inscribed within the Brillouin

zone. The corners of the hexagon (M points) are saddle points of the dispersion and give

rise to a logarithmic divergence in the density of states (Van Hove sigularity). There are

three inequivalent M points. In addition, there are Fermi pockets at the � point and a small

Fermi pocket on the line �M , which comes from a Dirac point. Figures are taken from arXiv:

2012.15709, with permission
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Figure 1: (a) An illustration of the material structure of AV3Sb3. The low energy electron
states are believed to live largely on the V atoms. (b) An illustration of the idealized Fermi
surface. The largest Fermi pocket consists of a single hexagon inscribed within the Brillouin
zone. The corners of the hexagon (M points) are saddle points of the dispersion and give
rise to a logarithmic divergence in the density of states (Van Hove sigularity). There are
three inequivalent M points. In addition, there are Fermi pockets at the Γ point and a small
Fermi pocket on the line ΓM , which comes from a Dirac point. Figures are taken from arXiv:
2012.15709, with permission

peaks have an intensity anisotropy which is argued to be chiral. The system appears to have
a quadrupled in plane unit cell. There is large (but not quantized) anomalous Hall effect
in the CDW regime, but no sign of local moments in muon spin spectroscopy. The CDW
state appears to feature unusual magnetic tuneability, also suggesting chirality and raising
tantalizing connections to classic theory works on chiral insulators with orbital currents
[18, 19].

Some key questions raise themselves. The first set involves completing the experimental
characterization of the system. What symmetries are broken in the CDW state? The
presence of a large anomalous Hall effect and the switch-ability by magnetic field suggest
time reversal symmetry breaking, but muon spin spectroscopy does not see local moments.
Can we directly confirm if the CDW state itself breaks time reversal symmetry? Meanwhile,
what is the nature of the anisotropy? Chiral (as argued), nematic, or something else? Is
it there throughout the CDW phase, or is the chiral/nematic transition separate from the
CDW transition, such that there are in fact two CDW phases? Furthermore, given that
these are layered materials, what is the three dimensional (i.e. inter-layer) structure of
the CDW? Meanwhile, superconductivity develops around 1K. Does CDW order co-exist
with superconductivity, or does it disappear at the superconducting transition? What is
the symmetry of the superconducting state? How does the phase structure change under
doping? Under pressure? Under applied magnetic field? Are there any additional phases
besides the CDW and superconductor? What does the full phase diagram look like?

A parallel set of questions involves the theoretical understanding of what is going on. The
nested ‘M point’ Fermi surface offers a natural route to correlated phases that exploits both
the nesting and the divergent density of states. This approach begins by parametrizing elec-
tron electron interactions in terms of a finite number of ‘g’ parameters (g-ology - see Fig.2b),
and then examines the leading weak coupling instability within a perturbative renormaliza-
tion group perspective. This approach looks much the same on any hexagonal lattice, except

2



(a)
(a)

9 
 

 
Figure 3 Magnetic field response of the chiral charge order. a, b, c, Spectroscopic 2×2 vector peaks 
taken at B=0T, -2T, +2T, respectively. Data are taken on defect-free regions. The images are Fourier 
transforms of spectroscopic maps acquired on an Sb surface 30nm×30nm in size at 10mV. A circular region 
of the full Fourier-transformed image is shown for clarify, highlighting the six 2×2 vector peaks. The top 
and bottom panels are 3D and 2D presentations of the data. The chirality can be defined as the counting 
direction (clockwise or anticlockwise) from the lowest to highest pair vector peaks.  
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FIG. 2: Possible interactions in the patch model. (a) Feyn-
man diagrams representing allowed two-particle scattering
processes among di�erent patches, Eq.1. Solid and dashed
lines represent fermions on di�erent patches, whereas wavy
lines represent interactions. (b) Pictorial representation of
these scattering processes, superimposed on a contour plot of
the energy dispersion. Each scattering process comes in three
flavors, according to the patches involved. However, it follows
by symmetry that the scattering amplitudes are independent
of the patches involved, and therefore we suppress the flavor
labels.

tree level, but acquire logarithmic corrections in pertur-
bation theory, which come from energy scales E < �,
where � � t is the energy scale at which higher order
corrections to the dispersion become important.

Logarithmic divergences in perturbation theory analy-
sis indicate that the problem is well suited to study using
RG. The building blocks of the RG are the susceptibilities
in the particle-particle and particle-hole channels, �pp

and �ph, evaluated respectively at momentum transfer
zero and at momentum transfer Q��=� (Fig.1). Similarly
to [21], we have

�pp(0) =
�0

4
ln

�

max (T, µ)
ln

�

T
, (2)

�ph(Q��=�) =
�0

4
ln

�

max (T, µ)
ln

�

max (T, µ, t3)
,

and �ph(0),�pp(Q��=�) = �0 ln �
max (T,µ) , where � is our

UV cuto� (Fig.1) and T is the temperature. The single
spin density of states at a saddle point is �0 ln �

max (T,µ) .

The additional log factor in �pp(0) (Cooper channel)
arises because �k = ��k, generic for any system with
time reversal or inversion symmetry. In contrast, the ad-
ditional log factor in �ph(Q��=�) arises from nesting of
the FS, and is cut in the IR by any term that spoils the
nesting, such as third neighbor hopping t3 or doping µ
[12]. We assume max(t3, µ) � �, so �ph(Q��=�) and
�pp(0) are of the same order under RG.

RG equations: The RG equations are obtained by ex-
tending the approach developed for the square lattice

problem [20] to the number of patches n > 2. The num-
ber of patches matters only in diagrams with zero net
momentum in fermion loops, since it is only there that
we get summation over fermion flavors inside the loop.
The only zero-momentum loop with a log2 divergence is
in the Cooper channel. Moreover, only the g3 interaction
changes the patch label of a Cooper pair, therefore, the
number of patches a�ects only diagrams where two g3 in-
teractions are combined in the Cooper channel. With log-
arithmic accuracy, using y = �pp(k = 0, E) = �0

4 ln2 �
E

as the RG time, we obtain the � functions

dg1

dy
= 2d1g1(g2 � g1),

dg2

dy
= d1(g

2
2 + g2

3),

dg3

dy
= �(n � 2)g2

3 � 2g3g4 + 2d1g3(2g2 � g1), (3)

dg4

dy
= �(n � 1)g2

3 � g2
4 .

Here d1(y) = d�ph(Q)/dy � �ph(Q)/�pp(0) is the
‘nesting parameter’ [20, 21]. This quantity equals one
in the perfectly nested limit. For non-perfect nest-
ing, d1(y) has the asymptotic forms d1(y = 0) = 1,
d1(y � 1) = ln |�/t3|/�y, and interpolates smoothly
in between. Since the RG equations flow to strong cou-
pling at a finite scale yc, we treat 0 < d1(yc) < 1 as a
parameter in our analysis.

The �-functions, Eq.(3), reproduce the two-patch RG
from [20] when we take n = 2, and neglect subleading
O(log) divergent terms (d2,3(y) from [20]), and also re-
produce for n = 2 the RG equations for the Fe-pnictides
[22]. Graphene near the Van Hove singularity however is
described by n = 3.

We note from inspection of (3) that g1, g2 and g3 must
stay positive (repulsive) if they start out positive. This
follows because the � function for g2 is positive definite,
and the � functions for g1 and g3 vanish as the respec-
tive couplings go to zero. However, g4 decreases under
RG and eventually changes sign and becomes negative.
As we will see, g3 � g4 becomes large and positive under
RG, driving an instability to a superconducting phase.
However, the positive g3 coupling penalizes s-wave su-
perconductivity, so pairing occurs in a higher angular
momentum (d-wave) channel.

We integrate our RG equations with n = 3 from start-
ing from gi = g0 = 0.1 and modeling d1 as d1(y) =
1/

�
1 + y. The results are plotted in Fig.3. Similar re-

sults are obtained if we just treat d1 as a constant. The
couplings diverge at a scale yc � 1/g0, corresponding to
a critical temperature and ordering energy scale

Tc, E0 � � exp(�A/
�

g0�0). (4)

Here A is a non-universal number that depends on how
we model d1(y). For d1 = 1 (perfect nesting, correspond-
ing to zero third neighbor hopping t3), we obtain A = 1.5.

Figure 2: (a) STM measurements on the CDW phase at 4.2 K reveal ordering at three dis-

tinct wavevectors (3Q order), with the ordering vectors being equal to the ‘nesting vector’ for

the hexagonal Fermi surface. The strength of ordering appears to exhibit a chiral anisotropy.

Figure taken from arXiv: 2012.15709, with permission. (b) The ‘g-ology’ model for interac-

tion e↵ects on the hexagonal Fermi surface. One reduces the Fermi surface to three ‘patches’

at the three inequivalent saddle points, and then parametrizes the interactions in terms of

four g parameters, shown above, corresponding to inter-patch and intra-patch scattering as

appropriate. Figure taken from [15].
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Figure 2: (a) STM measurements on the CDW phase at 4.2 K reveal ordering at three dis-
tinct wavevectors (3Q order), with the ordering vectors being equal to the ‘nesting vector’ for
the hexagonal Fermi surface. The strength of ordering appears to exhibit a chiral anisotropy.
Figure taken from arXiv: 2012.15709, with permission. (b) The ‘g-ology’ model for interac-
tion effects on the hexagonal Fermi surface. One reduces the Fermi surface to three ‘patches’
at the three inequivalent saddle points, and then parametrizes the interactions in terms of
four g parameters, shown above, corresponding to inter-patch and intra-patch scattering as
appropriate. Figure taken from [15].

that ‘sublattice interference’ effects on the Kagome lattice [17] can alter the ‘bare’ (ultra-
violet scale) g-parameters. Of course, while the ‘g-ology’ approach is extremely appealing
from a theoretical perspective, it is controlled only at asymptotically weak coupling, and it
remains to be seen whether this is an appropriate description for the experimental systems.

More broadly, open theoretical questions include the following: What is the mechanism
giving rise to the various phases? If the CDW phase is chiral, is it related to the classic
theoretical discussions of phases with orbital currents [18, 19]? Is it related to the observed
anomalous Hall effect in twisted bilayer graphene? How does the superconductivity develop
inside the CDW phase? Does it have the same mechanism as the CDW phase, or distinct?
Can the onset of superconductivity be understood starting from the ‘bare’ bandstructure, or
is reconstruction of the bands by the CDW essential to the onset of superconductivity? What
is the interplay of superconducting, CDW and (perhaps) nematic order? Can we predict
theoretically what the phase diagram should be, particularly in the presence of applied field,
or applied pressure? Should we expect there to be additional phases? And can we usefully
guide the experimental exploration of these materials?

As should be clear from the above, much remains to be understood. However, the exist-
ing experiments already make clear that there is treasure to be found here, and the rapid
development of experiments promises answers to several key questions in the near future.
There are exciting times ahead.
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