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Determining the physical properties of strongly correlated systems is clearly one of the
final frontiers of condensed matter and cold atomic gases. For equilibrium systems, although
the situation remains complicated in “high” dimensions (in particular in two dimensions),
one-dimensional quantum systems have been blessed by various efficient methods: i) field
theory with techniques such as bosonization [1] have allowed to get asymptotically exact
descriptions of interacting bosonic and fermionic systems; ii) exactly solvable models such
as the Lieb-Lininger model [2] for Bosons and the Hubbard model for fermions [3] have
allowed to obtain thermodynamic properties and more recently even correlation functions.
The have also provided a rock solid basis on which to benchmark the more approximate
methods such as field theory; iii) remarkable numerical techniques such as DMRG [4] and
its variants [5] have been developed giving access to correlations for reasonable sizes and
times both in equilibrium and for out of equilibrium systems. More importantly we have
learned to combine these methods, extracting exact parameters to inject in the field theory
from the numerics or the Bethe-ansatz [6], turning the field theory into an essentially exact
description with spectacular experimental success.

However this fairy tale turns rapidly sour when we move away from equilibrium situations
to deal with out of equilibrium ones. One example is the iconic “Quantum Newton craddle”
experiment done in the group of D. Weiss [7] where a gaz of interacting bosons is split in
two blobs in a parabolic trap. The two blobs are hurled at each other and despite the many
interactions between the particles when the blobs overlap, many “undamped” oscillations
of the blobs are observed. For experiments similar to those our three pillars of knowledge
become rapidly much less efficient.
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� For field theory the initial distribution is quite far from the equilibrium one and cer-
tainly involves highly excited states. So field theory is not particularly reliable for
these very out of equilibrium situations, even if it can and had been used with great
success for more “moderate” out of equilibrium cases.

� Numerics is of course perfectly adapted to deal with such situations, but is in great
difficulty in continuum problems and more importantly has difficulties with reaching
long time limits. So questions on whether such an out of equilibrium system would
ultimately thermalize, go through intermediate but long lived states etc. are very
difficult to answer.

� Integrable models per se are a little bit out of their depth there. First even in equilib-
rium, correlations could only be computed very recently and only for the Lieb-Lininger
model and the XXZ chain. Second and more importantly the situations studied more
or less always contain elements that make the system non-integrable in a strict sense
(such as the parabolic potential in [7]).

Thus to address such out of equilibrium issues one tries to establish a hydrodynamic
description of the problem. This is usually what we do for weakly interacting systems,
or systems we believe thermalize rapidly locally [8]. We describe the system via a small
number of quantities such as the local density, the local velocity and the local energy density
(which represent coarse grained quantities on a “large” cell in the sense that it contains
many particles but still small compared to macroscopic sizes). If one assumes that each
cell thermalizes then this is the standard hydrodynamics description. Then the resulting
equations are manageable and we can extract the dynamics of the problem.

For an integrable system this description fails because of the very large number of con-
served quantities that are inherent to such systems. A very smart way to solve this problem
is to consider that for an integrable system the rapidities that appear in the exact Bethe-
ansatz equations play a role similar to momenta for non-interacting systems, something we
normally use in Boltzmann like descriptions [9]. It is thus tempting, even if highly non
trivial, to build a hydrodynamic equation for the full distribution of the rapidities. This
leads to generalized hydrodynamics equations (GHD) [10, 11]. This GHD works where the
conventional hydrodynamics would simply fail. Indeed GHD properly takes into account
the specificities of near integrable systems and the fact that some excitations live essentially
forever. It also provides a correct description of all the excitations irrespectively of how
high is their energy, something that would be out of reach of a simple field theory such as a
Tomonaga-Luttinger liquid description.

The two papers mentioned in this commentary provide experimental setups with 1D bose
gases to test for the validity of such a description. I will not go in the details of cold atomics
gases [12] and will just mention that the systems realized are near ideal experimental imple-
mentations of the Lieb-Lininger model of free bosons interacting with a contact repulsion.
The out of equilibrium aspect of the problem is provided by a proper modification of the
the trapping potential: increasing the trap strength by a factor of 100 for paper 1) [see e.g.
Fig. 1 of paper 1)] and going from a single minimum to a double well minimum for paper 2)
[see e.g. Fig. 4 of paper 2)]. These papers then compare the experimental results with the
predictions of GHD, either by looking at the time evolution of the density [Fig. 4 of paper
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2)] or even by observing directly the rapidity distribution (using a trick in the expansion of
the gas) in paper 1)). A summary of the experimental results and a comparison with theory
is given in Fig. 1. The agreement between experiments and the theory is excellent (contrary
to what would be the case with simple hydrodynamics equations) and show the power of
this mixed method to tackle out of equilibrium physics for systems close to integrability.

There is no doubt that this method will know several developments and that the story
is just at the beginning. Quantization has started to enter into play to go beyond the
“classical” hydrodynamics version [13]. In a way the GHD provides for out of equilibrium
systems the analogue of coupling the Bethe-ansatz equations with the field theory description
in the equilibrium case, and similar concepts and synergies between facets of a problem will
probably play crucial roles in other systems and perhaps dimensions as well.
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Figure 1: Top [from Fig. 4 of paper 2)]: the evolution of the density of atoms after a quench
from a double well to a single well harmonic trap. The solid lines are the predictions of GHD.
Bottom [from Fig. 3 of paper 1)]: Evolution of the rapidity distribution after a quench where
the depth of the trap has been increased a 100 times. The orange and red curves are the
experimental data, the blue curves are the prediction of the GHD theory. In both cases the
agreement is clearly remarkable.
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