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The ability to create two-dimensional materials with large unit cells in moiré structures
opens up a whole new parameter regime to study effects of high magnetic fields; high in the
sense that the flux per unit cell Φ becomes comparable to the flux quantum Φ0. In this case
one must of course properly account for the electronic structure forming a complex energy
spectrum, the Hofstadter butterfly[1, 2, 3, 4]. In the high-field regime, superconductivity is
full of surpises[5, 6]. While semiclassical reasoning suggests that superconductivity disap-
pears at Hc2, when a flux quantum fits in the area ξ20 given by the coherence length, it gets
enhanced in the high-field regime, at least if one can ignore Pauli limiting effects[7]. This is
a consequence of the altered density of states due to Landau-level quantization. From the
theory of the quantum Hall effect it is well known that an additional periodic potential leads
to an additional level complication as Landau levels split into q sub-bands if

Φ =
p

q
Φ0. (1)

Here, p and q are coprime.
In their manuscript Shaffer, Wang, and Santos give a very lucid and detailed analysis of

the nature of the symmetry-allowed pairing states in periodic solids at high field as function of
p and, more importantly, q. They find, in agreement with earlier results for charged bosonic
systems[9, 10], that superconductivity inevitably implies a broken translation invariance. In
addition, they show a rather peculiar aspect that is unique to the fact that Cooper pairs
have an effective charge e? = 2e; different symmetry pattern occur for even and odd values
of q. Finally, they analyze the topological properties of such Hofstadter superconductors and
show under what conditions Bogoliubov Fermi surfaces[11] are to be expected.

Placing a two-dimensional electron system in a homogeneous magnetic field that points
perpendicular to the plane does, by itself, not break translation invariance. However, gauge
invariance implies that translations are tied to gauge transformations. This is ultimately the
reason for the perfect Meissner effect at small and the Abrikosov vortex lattice at intermediate
magnetic fields. Just like in the Abrikosov lattice, in the high-field limit the phase of the
order parameter winds as one parallel transports around a unit cell. The combinations of
U(1) gauge transformations and translations form the magnetic translation group (MTG),
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consisting of non-commuting lattice translations. As MTG contains a subgroup of U(1),
broken U(1) necessarily breaks at least some elements of the magnetic translation group.
From their symmetry analysis Shaffer et al. demonstrate that due to e? = 2e for Cooper
pairs, the order parameter of the system has q components if q is odd and q/2 components
if it is even. Under a subsequent action of translations T̂1 and T̂2 of the MTG along the two
primitive lattice vectors a1 and a2 of the kind T̂2T̂1T̂

−1
2 T̂−1

1 the order parameter picks up the
Aharonov-Bohm flux of the unit cell

∆̂ → e−i e
∗
e

2πp
q ∆̂. (2)

This ultimately leads to the different transformation behavior for odd and even q, where
the parity of the total momentum of the pair leads to different transformation behavior for
even q. This reasoning seems to naturally extends to more complex superconducting states
such as those with e? = 4e pairing, where one then expects different behavior, depending
on the residue of q modulo 4. Quite beautifully this q- or q/2-component order parameter
leads to a Ginzburg-Landau expansion with internal Zq symmetry that can be analyzed
using the established approaches of multi-component superconductors. These Zq-symmetric
Hofstadter superconductors allow for topological superconductivity, where the Chern number
can be shown to have the same parity as the integer q. Overall this is a wonderful example
for the power of symmetry classifications in a complex and highly interesting setting.

The analysis by Shaffer et al. offers a very clear and comprehensive account of the mean-
field behavior of Hofstadter superconductors. It is the starting point to address a number
of interesting issues that one would expect or hope to be important in real materials: First,
there is the role of Pauli limiting and spin behavior in general. One clearly expects this
to affect the symmetry classification and maybe even the stability of the superconducting
states in a substantial way. Second, fluctuations beyond mean field display very rich behav-
ior for multi-component superconductors, where vestigial order seem inevitable. Hence, one
expects partial symmetry breaking to take place already before the onset of superconductiv-
ity, leading to rich high-field phase diagrams. Third, given the crucial role of interactions at
high magnetic fields, one would hope that this is the parameter regime where fractionalized
anyon superconductivity might finally be realized.
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