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The intriguing possibility of spontaneous breaking of time translation symmetry, resulting
in a novel phase of matter called a time crystal , was raised by Wilczek in 2012. Alas, a partic-
ularly natural definition of such a phase, in which the spacetime correlator

〈
φ(x, t)φ(0, 0)

〉
of an order parameter field tends to a nonconstant periodic function C(t) as |x| → ∞, was
proven to be impossible by Watanabe and Oshikawa, whether C(t) is computed in a ground
state or in a thermal ensemble [1]. In 2016, however, it was argued that a version of time-
crystalline order does exist in many-body localized (MBL) one-dimensional Floquet-driven
systems, where the Hamiltonian H(t) = H(t + T ) is a periodic function of time. In such
systems, observables exhibit a doubled period thus breaking a discrete time translational
symmetry [2, 3, 4].1 While this discrete time crystal may seem to be somewhat impover-
ished from the symmetry viewpoint, from a quantum statistical mechanical viewpoint it is
remarkable in that it also exhibits the phenomena of eigenstate order and absolute stability
(described below). Despite previous work on the topic, it was only very recently that groups
at Google [6] and at Delft University of Technology [7] have obtained substantial evidence
for the existence of such a discrete time crystal (DTC) phase, using quantum simulators.

1For an earlier JCCM contribution highlighting the work of ref. [3], see [5].
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Subharmonic generation, here at frequency 1
2
Ω where Ω = 2π/T is the drive frequency,

has of course been appreciated in various contexts, and for centuries. However, its manifes-
tation in non-dissipative many-body quantum systems heretofore has no precedent; this is
what is new about the MBL-DTC phase. The work of Khemani et al. [2] identified, for the
first time, several distinct phases of matter in a nonequilibrium MBL-Floquet setting, among
them the DTC. This is possible owing to the notion of eigenstate order, whereby individual
many-body eigenstates of the dynamics can exhibit symmetry-breaking or topological order,
even where the strictures of equilibrium thermodynamics would forbid such a state of af-
fairs [9]. In the MBL-DTC phase, the eigenstate ordering is spatio-temporal in nature. The
Floquet eigenstates resemble Schrödinger cat states |Ψν,± 〉 = 2−1/2

(
| ν 〉 ± P | ν 〉

)
, where

each | ν 〉 has a spatial spin-glass character, and P flips all the spins. Under the unitary evo-
lution UF corresponding to one drive cycle, a relative phase accumulation of π accrues over
one period, so that UF |Ψν,± 〉 = e−iθν

{
+1
−1

}
|Ψν,± 〉, and it takes general linear combination

of the cats two periods to return to itself. Thus, under generic initial conditions, period
doubling arises. Remarkably, this feature is robust with respect to all perturbations with
the same period T [3, 4], which the authors of ref. [4] refer to as ‘absolute stability’. This
is distinct from the conventional ordered phase of, say, an Ising magnet, where applying an
external field which breaks the Ising symmetry destroys the distinction between ferromagnet
and paramagnet, replacing the phase transition with a crossover.

In Floquet systems, the (unitary) evolution operator is the time ordered exponential

U(t, 0) = T exp
{
− i~−1

t∫
0

dt H(t)
}

and the Floquet unitary UF = U(T, 0) implements evolu-

tion over a single period. The eigenvalues of UF are phases exp(−iEαT/~), where the {Eα}
are the quasienergies , each defined modulo ~Ω. Like crystal momentum in a periodic poten-
tial being defined modulo reciprocal lattice vectors, each quasienergy is defined modulo ~Ω.
One might think that one can always write UF = e−iHFT/~ with HF a ‘Floquet Hamiltonian’,
but taking the logarithm of UF is tricky business, and generically this results in Hamiltonians
which are either very long-ranged or involve arbitrarily many-body interactions.

A driven system can exchange energy with its driver. From the second law of thermody-
namics, we therefore expect that the evolution will be toward a state of maximum entropy,
and since energy is not conserved, this means heating to T = ∞, where all quantum states
are equally likely. This is an ergodic phase, and according to the eigenstate thermalization
hypothesis (ETH) we expect all the eigenstates of UF will encode T =∞ properties, which is
to say a complete absence of correlations. This is called the Floquet-ETH (thermal) phase,
and it is the only ergodic phase of periodically driven systems in the thermodynamic limit.

To avoid the fate of heat death, a thermodynamically large number of conserved quantities
is needed. If, for example, HF is a free fermion Hamiltonian, then the occupation numbers
of all the fermion modes are conserved – a highly nongeneric situation which is not stable
to generic perturbations. By contrast, when the eigenstates of UF are many-body localized
[8], a robust Floquet-MBL phase may arise. In this case, the conserved quantities are the
so-called `-bit (for “localized bit”) Pauli operators τ zn, which can be regarded as ‘dressed’
versions of the Pauli operators Zn. Unlike the Floquet-ETH phase, which is unique, it was
found in ref. [2] that there can be several Floquet-MBL phases, one of which is the discrete
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Figure 1: (a) Phase diagram for the noninteracting model of eqn. 1, with gn = g and Jn = J
for all n (or their disorder averages). Quasienergy spectra sketches shown for (b) Floquet-
ETH phase (no cat states), (c) 0SG phase, and (d) πSG/DTC phase. With disorder and
interactions as in eqn. 1, each region typifies a Floquet-MBL phase. Adapted from [2, 6].

time crystal.

The model considered by Khemani, Lazarides, Moessner, and Sondhi (KLMS) [2] is one
with binary drive, for which

H(t) =


H1 ≡ −

∑N
n=1 gnXn +Hint , 0 ≤ t < 1

2
T

H2 ≡ −
∑N−1

n=1 Jn Zn Zn+1 +Hint , 1
2
T ≤ t < T ,

(1)

with H(t + T ) = H(t), and where Hint = K
∑N−1

n=1 XnXn+1 is an interaction Hamiltonian.
The Floquet unitary is UF = e−iH2T/2~ e−iH1T/2~. The transverse fields gn and the ZZ Ising
couplings Jn are random at each location along the chain. When K = 0, UF can be expressed
in terms of noninteracting fermions; this is the ‘free fermion parent’ of the KLMS time crystal.
When K > 0 the XX interaction spoils this feature, but all the Floquet eigenstates still
may be classified by their X-parity, PX =

∏N
n=1Xn . The phase diagram in Fig. 1a is shown

in terms of the couplings g and J , which for noninteracting fermions represent disorder
averages. In the presence of interactions, these phases are robust2. The four phases are:

Paramagnet (PM): This is a symmetry-unbroken phase in which the spins are mainly po-
larized along the transverse field. The spin-spin correlation function Cα

l,l′ = 〈φα |Zl Zl′ |φα 〉
tends to zero at long distances in all the Floquet eigenstates.

SPT Paramagnet (0πPM): The bulk spins again lie in the direction of the transverse field,
and the bulk correlations Cα

l,l′ decay to zero at large distances; there is no spontaneous

2In the presence of Zeeman terms hnZn which break Ising X-parity, only the πSG/DTC is absolutely
stable, and the other three phases are adiabatically connected.
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symmetry breaking. The eigenspectrum of UF is arranged into quartets, where the splittings
are exponentially close to 0 and π, an effect due to boundary spin degeneracy. On a ring,
there are no edges and all states are nondegenerate. This phase is thus a symmetry-protected
topological phase (SPT), similar to the S = 1 Haldane spin chain. In both cases, the edge
physics can be elicited by making entanglement cuts on the ring. At the upper edge of the
phase diagram, for homogeneous Jn = J , the edge spins each get flipped once per cycle, so
by continuity this phase may be considered a ‘boundary DTC’. The protecting symmetry is
Ising parity PX and so this phase is unstable with respect to the presence of Zeeman terms
of the form hnZn.

Spin Glass (0SG): Now the spins are polarized along Z, and Cα
l,l′ is nonzero. However, since

X-parity is still a good quantum number, each of the eigenstates of UF is a superposition,
á la Schrödinger’s cat, of a state with spin-glass order and its spin-reversed mate, with the
glassiness due to domain walls induced by the random transverse fields. These states are
doubly degenerate in their quasienergies, up to exponentially small splittings, because each
cat state is formed from a superposition of macroscopically distinct components. There are
no cat states in the spectra of the thermal, PM and 0πPM phases.

π-Spin Glass (Discrete Time Crystal) (πSG/DTC): Once again Cα
l,l′ is nonzero at large sepa-

rations, for all Floquet eigenstates. The cat states are no longer degenerate, but are separated
in their quasienergies by 1

2
~Ω. This is related to the fact that, for uniform gn = g, along

the line g = 1
2
~Ω, one has exp(iH1T/2~) = iNPX , which in the Z basis flips each spin once

per cycle, performing a perfect π-pulse. What is remarkable is that this behavior is stable
with respect to disorder, and indeed to any weak period-T perturbation. As emphasized in
ref. [4], this absolute stability is a property only of the DTC, and by adding a longitudinal
Zeeman term

∑
n hn Zn in the Floquet drive, the 0SG and 0πPM phases can be adiabatically

connected to the trivial PM phase.

This picture has been confirmed by numerical simulations [2]. Very encouragingly, soon
afterwards, experiments in which qubits were realized by spin impurities in room tempera-
ture diamond [10], and trapped atomic ions in a spin chain configuration [11], reported the
observation of a long-lived period-doubled spin response3. It has since turned out that these
systems did not realize eigenstate-ordered DTCs. Rather, they have served to enlarge our
understanding of how thermalization takes place. Ref. [10] is now understood to be a case
of slow thermalization across the entire spectrum due to the presence of long-ranged dipolar
interactions, while ref. [11] is apparently a case of prethermalization [13], where heating is
slow due to a mismatch between driving and internal energy scales, and the subharmonic
generation is associated with initial states being drawn from a very small and special fraction
of the total spectrum.

The theoretical requirements for the observation of an eigenstate-ordered DTC phase
were elucidated in table 1 of ref. [14]. The significance of the Google AI experiment, which
brings to bear many state-of-the-art tools from the field of quantum information, lies in
meeting all of these.

The Google processor (see Fig. 2a) consists of a chain of qubits connected to gates which

3These experiments were in part inspired by the theoretical work of ref. [12], which proposed signatures
such as imperfect spin echo as a protocol for identifying time crystalline behavior.
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Figure 2: (a) A sketch of the quantum processor circuit which reifies the model of eqn. 2.
(b) Measurements of the local qubit polarization 〈Zn(t)〉 at n = 11 in the Floquet-ETH
phase (left) and the MBL-DTC phase (right), shown for five different configurations of the
randomness. (c) The disorder-averaged autocorrelator Ā(t) = 〈Zn(t)Zn(0)〉, again at n = 11
and the echo Ā0(t) defined in the text. From ref. [6].

perform unitary operations. Such a device may be used to very naturally implement [14]
Floquet drives. The experiment simulated, with N = 20 transmon qubits, a model closely
related to that in eqn. 1, i.e.

UF = exp
(
− i

2

N∑
n=1

hn Zn

)
exp
(
− i

4

N∑
n=1

φn Zn Zn+1

)
exp
(
− i

2
πg

N∑
n=1

Xn

)
, (2)

where {hn} and {φn} are random and positive, each with a bounded uniform distribution,
with each φn ∈

[
− 3

2
π.− 1

2
π
]

and hn ∈
[
−π, π

]
. Under special conditions, such as all hn = 0

or transverse field g = 1, this model has certain discrete symmetries, such as X-parity or
time-reversal symmetry. When g 6= 1 and hn 6= 0, however, all discrete symmetries are
broken. Nevertheless, the DTC is robust within a range of g and hn, due to its absolute
stability [3, 4]. The stability of the DTC phase even in the absence of Z2 spin flip symmetry
was a key insight first provided by Else, Bauer, and Nayak [3]. As a (dynamical) phase of
matter, the DTC is characterized by its spontaneous breaking of discrete time translation
symmetry; it does not require the additional Ising PX symmetry in the model of eqn. 1.

The circuit itself, which processes input bit-strings, is depicted in Fig. 2a. In the thermal
phase, the spins thermalize at T =∞, and 〈Zn(t)〉 → 0, as confirmed in the first panel of Fig.
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Figure 3: (a) Site- and disorder-averaged autocorrelator
[
Ā(t)

]
for g = 0.94 with disorder

in {hn, φn} (left) and in {hn} alone (right). In the latter case, the system is not in an MBL
phase but rather exhibits transient DTC-like properties. Results for three initial bit-strings
are shown. (b) Histograms of

∣∣[Ā(t)
]∣∣, with 500 random input bit-strings, averaged over the

same set of 24 disorder realizations in (a) and over cycles t = 30 and t = 31. From ref. [6].

2b (g = 0.60). For g = 0.97, the system is in the MBL-DTC phase and 〈Zn(t)〉 oscillates
at the subharmonic frequency 1

2
Ω, as shown in the right panel. The disorder-averaged

autocorrelator, Ā(n, t) = 〈Zn(0)Zn(t)〉 behaves similarly, as shown in the right panel of Fig.
2c. However, these correlations decay on a time scale τ ≈ 80T , which could be due either to
slow thermalization, meaning we are in fact not in a MBL phase, or decoherence of the qubits
themselves. To assess which is the case, the team cleverly designed an ‘echo’ protocol which
measures the autocorrelator A0(n, t) = 〈Zn U

†
ECHO(t)Zn UECHO(t)〉1/2 and its disorder average

Ā0(n, t), where UECHO(t) = U−tF U t
F, i.e. t applications of the Floquet unitary UF followed by t

applications of its inverse U †F. With no qubit decoherence, UECHO(t) = 1 and thus Ā0(n, t) = 1,
yet the envelope shown in the black dots of both panels of Fig. 2c shows a decay, which
therefore must be due to decoherence. Furthermore, the decay of Ā0(n, t) perfectly matches
that of Ā(n, t) and the ratio Ā(n, t)/Ā0(n, t) evinces DTC order.

An essential aspect of the MBL-DTC phase is that the entire many-body spectrum exhibits
the same late time correlations, and these characteristic features are thus independent of the
initial state. This is illustrated in the left panel of Fig. 3a, which shows the

[
Ā(t)

]
, which is

the average of Ā(n, t) over both position and disorder, with three different bit-string inputs.
In the DTC the same oscillations are observed independent of the initial state, which is
consistent with the presence of eigenstate order. When the {φn} values are uniform (right
panel), the system is no longer in an MBL phase. Histograms of the autocorrelator over
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Figure 4: (a) Schematic for measuring the autocorrelator A(n, t) = 〈Zn(0)Zn(t)〉 where the
input bit-string is scrambled by the operator US, which implements K layers of random
single-qubit rotations interleaved with CZ gates. (b) A(n, t) with K = 20 cycles in US for
a single disorder realization (upper panel) and n = 11, showing also the echo result (black
curve), and the normalized correlator A(n, t)/A0(n, t) (bottom panel). (c) Histograms of
distributions of |A(n, t)| averaged over cycles t = 30 and t = 31, again for a single disorder
instance, and for different values of the layer number K. From [6].

cycles t = 30 and 31 are shown in Fig. 3b, averaged over the same disorder but now 500
initial bit-string inputs. For the DTC phase, the ratio σ/µ of the standard deviation to
the mean is 0.038,4 while in the uniform φn phase the histogram is asymmetric and much
broader in units of µ, with σ/µ = 0.129.

Furthermore, by scrambling the input bit-string, one can effectively average over a vastly
larger number of independent inputs, approaching an average over the entire many-body
Hilbert space with the Haar invariant measure – 500 seems a goodly number of initial con-
figurations, but 220 ≈ 106 is much larger! Averaging over the entire Hilbert space with the
Haar measure is, to exponential accuracy, equivalent to evaluating A(n, t) using a ‘typical’
initial state which is chosen from a Haar random distribution. Such an initial state is a
random superposition over the 2N basis states, which requires large resources to create. A
schematic for how this is approximately achieved is depicted in Fig. 4a. An initial bit-
string is subjected to a unitary scrambler US composed of K alternating layers of random
single-qubit rotations interleaved with quantum CZ gates5. This does not achieve true Haar
randomness, but the greater the depth K, the closer one gets6.

4In the thermodynamic limit one should have σ/µ = 0, and the small but finite value is attributed to
finite size and the relatively small number of disorder instances.

5A CZ (‘controlled Z’) gate acts on the four-element two qubit basis as diag(1, 1, 1,−1). These gates
entangle pairs of qubits.

6A truly Haar random initial state should give (to exponential accuracy) a zero width distribution, and
for all correlators, but this would require an exponentially large depth of the scrambler. For K = N = 20,
a distribution of the scrambled states generates a ‘2-design’, meaning that averages of all polynomials of
degree k = 2 in the local spin operators with respect to this distribution are guaranteed to coincide with
their averages with respect to the full Haar measure. For a k-design distribution, averages of all polynomials
of order k in the local operators are equal to their averages with respect to the Haar measure. This affords a
scalable protocol for computing spectral averages. Still, it is worth reiterating that the average here is with
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Figure 5: (a) Rough phase diagram in the (θ, τ) plane. (b) Site-averaged autocorrelator χ̄(t)
for the three different locations in (a), with fully polarized initial state. (c) The Fourier
transform of χ̄(t) shows a sharp peak in the MBL-DTC phase. (d) χ̄(t) in the MBL-DTC
phase for even (upper) and odd (lower) cycle times for nine randomly chosen initial states.
Three states are measured to t = 800 and the remainder to t = 300. Dashed black curves
show the averages. (e) Energy density spectrum of all 210 possible bit-string configurations
in the MBL-DTC phase, evaluated with respect to an effective Hamiltonian derived from
the leading order Floquet-Magnus expansion of UF. From ref. [7].

Fig. 4b (top panel) shows the behavior of the autocorrelator A(n, t) for a single disorder
realization and a single initial state generated by a K = 20 cycle unitary scrambler acting
on an input bit-string. The corresponding echo result A0(n, t) shown in black (top panel).
The bottom panel shows the normalized autocorrelator A(n, t)/A0(n, t). Fig. 4c shows a
histogram of those |A(n, t)| values averaged over cycles t = 30 and 31 for different depths K
of the scrambler US. What is found is that as K increases, the width of the distribution gets
progressively smaller, with the ratio σ/µ = 0.015 for K = 20, which is considerably smaller
than the value found by averaging over 500 input bit-strings and 24 disorder realizations.
This is strong evidence for eigenstate ordering in the MBL-DTC phase.

respect to a single initial state, albeit a highly entangled one, and not the entire 2-design distribution.
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The Delft simulator’s qubits are 13C nuclear spins in diamond [7]. Although this work
utilized not quite half as many qubits (N = 9) as that of the Google processor, the simulation
times were substantially longer, reaching t = 800 cycles as compared with Google’s 100. The
simulator evolves its qubits according to the Floquet unitary UF = UZ(τ)UX(θ)UZ(τ), where
UZ(τ) = exp(−iHZτ/~), with

HZ =
∑
n

(B + hn)Zn +
∑
n<n′

Jnn′ Zn Zn′ , (3)

and UX(θ) = exp
(
− i

2
θ
∑

nXn

)
. Here B is a magnetic field splitting, hn is a local frequency

shift due to the electron-nuclear hyperfine interaction, and Jnn′ are the zz-components of
the magnetic dipole interaction between spins n and n′. The spins are arranged in a one-
dimensional chain, where MBL can be stabilized under periodic driving despite the presence
of long-ranged interactions Jnn′ ∼ |n − n′|−3. When θ = π, the model is time-reversal
symmetric, which is to say TX UF T −1X = U †F , where TX = KPX , with K complex conjugation,
is an (anti-unitary) time-reversal operator. Taking θ 6= 0, π breaks all discrete symmetries.

Fig. 5a shows a rough phase diagram in the (θ, τ) plane for the model of eqn. 3. Panel
(b) shows the autocorrelation function χ̄(t) = N−1

∑N
n=1〈Zj(t)〉〈Zj(0)〉 as a function of

the Floquet cycle number t. The value of θ is fixed at θ = 0.95π, which is to say deliberate
underrotation, and the initial state is fully polarized |↑↑ · · · ↑ 〉. When τ = 0, one has HZ = 0
and the spins are consistently underrotated, leading to a decay in χ̄(t). For τ = 5 ms, the
system is in the MBL-DTC phase and χ̄(t) decays slowly, and the envelope of the period
∆t = 2 oscillations loses half its amplitude over ∼ 100 cycles. The discrete Fourier transform
of χ̄(t) is shown in panel (c), and exhibits a pronounced peak at the subharmonic frequency
1
2

in the MBL-DTC phase. To test for dependence on initial conditions, the Delft group
measured χ̄(t) for nine different initial states of the form |σ1 · · · σ9 〉, depicted in panel (d),
with energy densities shown relative to the entire spectrum in panel (e)7.

The Delft results, for a single disorder realization and with nine spins, thus conform to
the general desiderata of ref. [14], showing both subharmonic behavior in the autocorrelator
χ̄(t) which does not vanish upon spatial averaging, and which survives up to t = 800 cycles,
i.e. long-lived spatiotemporal response to the Floquet drive, as well as independence on
initial conditions.

It should be noted that the very existence of MBL phases, even in d = 1, is an increasingly
murky issue. A recent study [15] has concluded that numerical work heretofore has vastly
overestimated the stability of static MBL phases, and that the regime of true MBL behavior
occurs at substantially weaker values of the interaction strength (at fixed disorder) than
previously believed. While Google’s processor seems impressively clean and scalable, both
the Google and Delft simulators involved small numbers of qubits. Could it be that the
Google simulator in fact exhibits a finite correlation time, even after decoherence effects are
nulled out, which is simply longer than can presently be observed? The Google team also
measured the disorder-averaged spin-glass order parameter χSG as a function of the transverse
field strength g, and performed a scaling analysis as a function of chain length in order to

7The energy densities were computed from 〈ψ |Heff |ψ 〉/N , where Heff is an effective Floquet Hamiltonian
obtained by going to first nontrivial order in the expansion of HF = i~τ−1 logUF.
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determine the critical point at which MBL-DCT order is lost, finding 0.83<∼ gc<∼ 0.88. While
this was necessarily done over a finite range of cycle times (between t = 51 and t = 60), it
would seem that at g = 0.97 their system is well in the MBL phase.

The Google Quantum AI experiment in particular has set a standard in the verification
of quantum dynamics. In identifying the possibility of multiple Floquet-MBL phases, the
work of Khemani et al. opens the door to new possible dynamical phases of quantum mat-
ter stabilized by disorder and interactions, and indeed several new examples have already
been identified theoretically. Rapid advances in quantum information device design and im-
plementation are sure to provide us with additional checks on these and other fascinating
theoretical ideas in the foreseeable future.

I am grateful to John McGreevy for helpful discussions.
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