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Fig. 1. The 1D Fermi sea (yellow regions) of this dis-

persion has Euler characteristic χ = 2 (two line seg-

ments along the momentum axis). The same number

can be obtained by counting the number of intersec-

tions of the dispersion with the Fermi level (green dots)

or by counting the number of extrema below the Fermi

level (red and blue dots). The ballistic conductance

equals G = Ne2/h with N = χ.

This recent paper by Charlie Kane struck
me because it starts from an effect I thought
was completely understood and restricted
to 1D, then finds a novel interpretation
which suggests a higher-dimensional gener-
alization. The 1D effect is the quantized
conductance, G = Ne2/h, of an N -mode
wire without any disorder (ballistic trans-
port). The novel interpretation is that the
integer N is the Euler characteristic χ of the
1D Fermi sea, and the generalization is that
in d dimensions χ governs the nonlinear con-
ductance of a d+ 1 terminal geometry.

The d = 1 case is illustrated in Figure 1.
To find the conductance of a two-terminal
ballistic wire one would count the number of
intersections of the dispersion relation E(k)
with the Fermi level EF. Each of the N
intersections with positive slope identifies a
right-moving propagating mode, which con-
tributes e2/h to the conductance. The same
number N counts the number of intervals
of momentum k with E(k) < EF. These k-
intervals form the Fermi sea, the filled states
below the Fermi level. Since a line segment has Euler characteristic χ = 1 (2 vertices minus
1 edge plus 0 faces = 1), the number N can also be called the Euler characteristic χ of the
1D Fermi sea.1

1In this 1D case one might equivalently identify N with one half the Euler characteristic χ̃ of the Fermi
surface {k|E(k) = EF}. More generally, for odd d one has χ̃ = 2χ, while χ̃ = 0 for even d, hence the focus
on the Fermi sea rather on its boundary, the Fermi surface.
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True, but why would you want to do that? As Kane explains, with this identification
one can think about the generalization to a higher dimensional Fermi sea. For that purpose
it is helpful to use yet another way to extract χ from the dispersion relation E(k): First
identify the set of critical points, the momenta k in the first Brillouin zone where E < EF

and ∇E = 0. Group these points into sets of size Neven and Nodd, depending on whether
E(k) decreases along an even or an odd number of axes as one moves away from the critical
point. Then Morse’s theorem says that χ = Neven − Nodd. In 1D there is only one axis,
so Neven counts the number of minima and Nodd the number of maxima of the dispersion.
In 2D, with two axes, both minima and maxima contribute to Neven, while Nodd counts the
number of saddle points below the Fermi level.

Fig. 2. Equi-energy contours of the 2D dispersion

E(ky, ky) = 3 − 2 cos kx − cos ky. The red square in-

dicates the Brillouin zone. With increasing EF the

topology of the Fermi sea changes from a disc (χ = 1),

to a cylinder (χ = 0), to a torus minus a disc (χ = −1),

and finally to a torus (χ = 0) for a fully filled band.

The inequivalent critical points are indicated by red

dots (one minimum and one maximum, contributing

to Neven) and blue dots (two saddle points, contribut-

ing to Nodd).

As an example, Figure 2 shows the dis-
persion relation E(kx, ky) for a 2D square
lattice. When the Fermi level is just above
the band bottom, the Fermi sea is a disc,
there is one minimum below EF soNeven = 1,
Nodd = 0⇒ χ = 1. Check with Euler’s poly-
hedron formula: the disc can be deformed
into a triangle, and 3 vertices minus 3 edges
plus 1 face = 1.

If EF is increased it crosses a saddle
point, so Nodd increases by one unit and
χ = Neven − Nodd = 0. The Fermi sea then
extends over the Brillouin zone in one direc-
tion, and since opposite edges of the Bril-
louin zone must be identified the topology is
that of a cylinder. Upon further increase of
EF a second saddle point is crossed and when
the Fermi level crosses the top of the band
one has Neven = Nodd = 2 ⇒ χ = 0. The
Fermi sea then extends over the Brillouin
zone in two directions, it has the topology
of a torus.

So how would one measure this topolog-
ical quantum number? We are considering a
gapless system, with a partially filled band,
so the case for topological protection is less
favorable than it is, for example, in the case of the Chern number of a filled band (measured
via the quantum Hall effect). The Chern number is an integral over the Berry curvature, and
the Euler characteristic can likewise be expressed as an integral over the geometric curvature,
but this analogy has not yet inspired a measurement scheme.

Kane takes a different approach, relying on the relationship χ = Neven − Nodd between
the Euler characteristic and the critical points of the dispersion relation. Figure 3 shows a
d+ 1 terminal geometry in 2D and in 3D. The d-dimensional solid angle is divided into d+ 1
sectors, voltages V1, V2, . . . Vd are applied to the first d sectors while the last sector draws
a current I to ground. A sequence of voltage pulses of integrated area

∫
Vd(t) dt = h/e
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transfers one state through each critical point in the dispersion, producing a current pulse∫
I(t)dt = χe. In the frequency domain, for Vd(t) = Vd cos(ωdt), the current to ground

contains a component at frequency ωΣ =
∑d

n=1 ωd given by

I(ωΣ) = χeωΣ

d∏
n=1

eVd
hωd

. (1)

Fig. 3. Two-dimensional conducting disc

(top, d = 2) and three-dimensional con-

ducting sphere (bottom, d = 3), with d volt-

age contacts Vn and one contact to ground.

I must admit that I have not yet succeeded in con-
vincing myself of the generality of this formula. I have
no reason to doubt the calculations in Kane’s paper,
a semiclassical Boltzmann equation is sufficient to de-
rive Eq. (1), or one can apply the quantum nonlinear
response theory. But the calculations are based on
a specific geometry, and it is not obvious to me how
general the answer is. One example I am struggling
with: take the 3D setup in Figure 3 and rotate the
lower half of the sphere by 90◦ around the z-axis. The
planes that separate the sectors then meet in a point
rather than along a line. Does it matter?

This is actually the reason I’m recommending this
paper in the journal club: It opens up a line of thought
that promises fundamental new insights into trans-
port properties of complex band structures. Are there
other observables that provide a global measurement
of the Euler characteristic of the Fermi sea?
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