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Polymer entanglement determines rheological properties of polymer melts, important in
a range of technological applications. Changing the polymer topology is a promising way
to modify the entanglements without the need of changing the chemistry. A prototypical
example, the melt of ring polymers, where each ring is unknotted and unlinked to others,
exhibits striking viscoelastic differences in comparison to a melt of linear chains [1]. While
the entanglements of linear polymers are relatively well understood, how the chains without
ends entangle remains a big mystery.

Entanglements in linear polymers are described in terms of reptation theory, by which
each chain diffuses within an effective tube imposed by the uncrossability constraints due
to the presence of other chains [2]. The tube geometry determines the melt rheology and
is governed by the entanglement length N, that can be computed from experiments or
simulations [3] and theoretical models on its microscopic origins are emerging [4, 5, 6].

In contrast, the entanglements of the rings are more involved. First, there is no obvious
“tube”; the constraints, imposed by other chains, are not only excluding mutual chain overlap
(as in linear case), but also have to respect the fixed trivial topology of the system i.e. rings
cannot knot or link. As a result, the rings adopt self-similar crumpled conformations, as
revealed by simulations [7]. Second, rings cannot “reptate” as they have no ends that would
break the symmetry. Consequently their viscoelastic response exhibits a power-law [1], in
contrast to the case of linears with an elastic response on intermediate time-scales. Third,
ring topology supports a special kind of entanglement, by which chains form supramolecular
structures and cause strong viscosity thickening observed in extensional flows [8]. Fourth,
in contrast to third, both rings and linears exhibit viscosity thinning in shear flows [9]. All
these effects (and some more) are impacted by the entanglements, but their description in
the melt of ring polymers, as illuminating as the effective tube and entanglement length, is
missing so far.

Wang and Ge explored the entanglement effects in the ring melt with an original approach
using the fact that polymer melts are liquid precursors to solid polymer glasses that arise
from quenching of the melt. The mechanical properties, such as response to tensile strain,
of the resulting polymer glass strongly depend on the quenched entanglements. The paper


https://www.condmatjclub.org
https://doi.org/10.36471/JCCM_January_2022_03

of Wang and Ge investigates the development and the structure of crazing in deformed ring
polymer glass. Making parallels with known crazing properties of linear polymer glasses,
they not only explore and explain the mechanical properties of the ring glass (a feat on its
own), but make several important discoveries regarding the entanglements of rings.

Upon stretching deformation a solid polymer glass develops cavities interconnected with
fibrils of polymer chains (crazing), leading to a plateau in a stress-strain curve. Further
straining induces stress increase followed by a drop as the material fails. The stress develop-
ment and failure mechanism depends on the level of entanglement. If linear chains are long
enough (N ~ 3N,) to entangle substantially, the plateau stress develops and glass fails by
chain pullout, and if they are even longer (about 10/N,) the entanglements cannot be resolved
and the glass fails through chain scission. As Wang and Ge show, the rings behave similarly,
but the plateau stress develops fully only for much longer chains (14N,) and the glass fails
through scission. Two comments are in place: () Although it was not investigated in detail,
it would be interesting to look if there exists similar threshold between chain pullout and
chain scission-dominated failure in rings. (i) As found in equilibrium simulations [7], the
length scale above 14N, is the one above which the equilibrium rings start to be strongly
impacted by the topological constraints and exhibit a compact size scaling with their length
R~ N'/3.

In crazing of linear polymer glass, the ratio of densities in the uncrazed and the crazed
regions A, is related to the maximum extension the entangled polymers can have, which
in turn is related to N,. In analogy, Wang and Ge implied similar relation holds for the
rings. Based on the compact ring scaling, they constructed a geometric argument for the
maximum extension of rings. Then measuring and comparing A’s for linears and rings allow
them to deduce the quantity NF governing the length between entanglements relevant for
crazing in rings (analogous to N,), finding N® = 4.3N,. This finding then reconciles the
chain length thresholds for stable craze formation, being ~ 3N, for linears and ~ 3N for
rings, meaning that a few (about three) entanglements are needed for the formation of the
craze and to prevent the chain pullout. The finding of N} was further tested and confirmed
by the analysis of the fibril geometry and the plateau stress, both of which are related to
the entanglement length scale.

This work finds a nice natural physical way to find the length scale NY, governing some
aspects of the ring entanglements. One may argue that its existence is not surprising, because
highly stretched rings should resemble highly stretched linear chains. However, when it
comes to comparison of the chain entanglements such a ring-linear correspondence is not a
trivial result at all, because of different initial (equilibrium) ring conformation. Moreover
the authors conducted a series of perturbation experiments on the crazed systems to explore
the ring entanglements in more detail. First they chopped the glassy rings into linear chains
of equal length Ny, and showed that (i) stable crazing develops only if Ny, > 3NeR, hence
the N} plays the role of the entanglement length for ring polymer crazing, and (ii) the
stress-strain curves for systems with Ny, were almost identical to those obtained from rings
of length N = Ng,;,, which highlights the self-similar nature of ring conformations. The
latter result also implies that the mentioned supramolecular structures (only supported by
ring topology) found in extensional flows are not relevant for crazing of ring polymers, as the
stress would be different in the cut experiments. In another set of perturbative experiments,
the authors pinned a number of monomers on each ring in space and increased the chain



tension. In essence this is a generalization of primitive path analysis (performed on linear
chains with just the ends pinned [3]) which reveals the entanglement length as the Kuhn
length (in monomer units) of the resulting random walk-like primitive path. The method
applied to rings shows: (i) if pinned segments are shorter than N they are essentially
straight implying no entanglements, and (ii) if longer segments are pinned the scaling of
pin-to-pin distance is sub-linear in contour length, but not clearly random-walk-like. These
results demonstrate that the length scale N characterizes both, the topological constraints
relevant in crazing and the ones relevant in pulling chains with internal tension. At the same
time, the nature of these latter constraints in rings is different from linears, as the resulting
“primitive path” is not a standard Gaussian random walk.

In conclusion, the work not only characterizes the mechanical properties of ring glass, but
also elucidates the nature of the entanglements in crazing and beyond. The most pertinent
question arising is what is the microscopic origin of Nt ~ 4N, or in other words, why only
about every fourth “linear entanglement” is relevant for the crazing of rings, or possibly
even in their equilibrium melt? Further, why are the supramolecular structures not relevant
in crazing - are they present at all and just subdominant? Can this view of entaglements
in rings reveal something about the long-standing conjecture on the existence of topological
glass [10]7 Irrespective of whether we find answers to these questions, the multi-layered work
of Wang and Ge shows that it is worth investing the effort into elucidating the nature of
entanglement of polymers with ring topology. Such investigations can not only be of practical
consequences (as in the case of ubiquitously used entangled linear polymer glasses), but are
also intriguing from the fundamental perspective, i.e. how the topology of the constituents
impacts physical properties.
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