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The dynamics of thermalizing, out-of-equilibrium quantum systems harbors a wealth of
open questions about transport properties, operator scrambling, spreading of entanglement,
and complexity of classical simulation [1, 2]. While significant progress has been made in
special cases such as integrable systems [3], to understand more generic systems numerical
calculations play a major role. However, there are major limitations when considering the
existing landscape of numerical techniques.

A large body of numerical work on thermalization and long-time dynamics of many-body
systems has relied on exactly diagonalizing the Hamiltonian to obtain the full spectrum
[4, 5, 6], allowing one to reach arbitrary times and temperatures but severely limiting the
system sizes that can be addressed.

A promising alternative is using matrix product state (MPS) techniques [7, 8] to study
the dynamics of one-dimensional systems. MPS are a factorized representation of a quantum
state into a chain of matrix products, with different matrices placed into the chain depending
on the amplitude one wishes to compute. An MPS is also one of the simplest examples of
a tensor network. In one dimension, MPS scale to large or even infinite system sizes, and
there are a variety of controlled algorithms to evolve them to moderate times and to include
finite temperature effects [9, 10, 11, 12]. But simulating out-of-equilibrium dynamics with
MPS to long times encounters a serious problem: under unitary, closed-system evolution, the
entanglement of most quantum states grows quickly and eventually becomes proportional to
the number of sites of the system [13]. ∗ Because MPS are a compression technique relying

∗This is in sharp contrast to one-dimensional ground states where the entanglement is independent of
system size.
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on low entanglement, such a rapid growth is a disaster and leads to an exponential blow up
of both memory and computational costs.

However, there have been a number of clues that MPS time evolution may be “fixable”
for reaching the long-time, hydrodynamic regime of thermalizing systems. One clue was
the development of an intriguing algorithm for time-evolving MPS which projects the full
Hilbert space dynamics into the manifold of MPS having a fixed number of parameters.
This algorithm, known as the time-dependent variational principle (TDVP) [12], realizes
a kind of semiclassical dynamics within the space of MPS states which exactly conserves
energy and exhibits chaotic behavior, while having a precise connection back to the true
quantum dynamics. Numerically integrating the TDVP equations was conjectured to be
sufficient to capture transport coefficients, such as the energy diffusion constant, even when
working at a fixed level of approximation [14]. However, follow up work showed that such
a fixed-approximation approach can fail to capture the true diffusion constant and a more
systematic extrapolation is needed in general [15].

Another important clue that MPS techniques might be extended to capture long-time
dynamics was the realization that thermal mixed states can generically be captured by an
MPS if one works within a doubled Hilbert space—a so-called purification [16]. (Purifying
the system is equivalent to working with an operator extension of MPS, called a matrix prod-
uct operator or MPO.) Since non-integrable systems generically thermalize at long times,
one might hope that evolution of a pure state represented as an MPS can be smoothly con-
nected to a mixed-state description at longer times without encountering a high-entanglement
regime of the time evolution that cannot be numerically handled. Or that by working with
mixed states or in a Heisenberg picture of evolving operators from the beginning one can
handle the computation at all times.

Indeed such operator-centric MPS (or MPO) approaches to efficiently studying long-time
dynamics have begun to appear [17, 18, 19, 20, 21, 22]. One important realization was that
the usual compression or truncation developed for MPS when applied to mixed states is
not sufficient for controlling the growth of entanglement, even though the long-time mixed
state should fit within the space of MPS. One way to understand this point is that unitary
dynamics is reversible, while a thermal Gibbs states has no “memory” of the particular initial
state it evolved from. Thus some of the newly proposed approaches [17, 18, 19, 20, 21, 22]
are distinguished by their relatively aggressive truncation procedures that dispense with
reversability. For example, the density matrix truncation algorithm proposed by White et
al. [18] discards a small piece of the mixed state after each time step, although it crucially
preserves local, overlapping reduced density matrices as well as the overall unit trace.

Rakovszky, Keyserlingk, and Pollmann [22] have proposed a different operator-based evo-
lution procedure they call dissipation assisted operator evolution (DAOE) that is compelling
for its simplicity: within a Heisenberg picture of evolving the operators whose dynamics one
wants to measure, the dynamics is expressed within the basis of strings of Pauli matrices.
As a choice of basis, it is straightforward to implement with MPS techniques. But it gives a
clever advantage: one can implement an artificial dissipation step in a numerically efficient
way. The details are technical, but one can exactly define another, efficiently implementable
tensor network which acts on the operator being evolved so as to suppress all operator strings
whose length is greater than some length `∗. More precisely, if one writes the operator being
evolved at a certain time as O(t) =

∑
cS(t)S where each S is a string of Pauli operators
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and `S its length †, then after being acted by the dissipation superoperator D`∗,γ the new
operator O′(t) after dissipation becomes

O′(t) = D`∗,γ[O(t)] =
∑

S, `S≤`∗
cS(t)S +

∑
S, `S>`∗

e−γ(`S−`
∗)cS(t)S . (1)

Operator strings whose lengths are less than `∗ are unaffected, while longer operator strings
are exponentially suppressed. The dissipation step is applied periodically during the time-
evolution procedure, so that the actual amount of dissipation depends on the ratio of the
period of dissipationless evolution to the dissipation strength γ.

Though the dynamics are now artificially deformed from the true unitary dynamics, one
can hope to extrapolate in the dissipation strength γ, working at different values of `∗. Most
importantly, the whole point of introducing the dissipation is that one hopes it will make
the dynamics more numerically tractable by reducing the complexity of the state the MPS
must capture. This hope is actually realized: during the evolution, the entanglement of
the MPS used to represent the operator first increases, but then saturates to a fixed long-
time value, allowing the dissipative dynamics to be run at fixed accuracy for arbitrarily
long times and for large system sizes. Yet despite the artificial nature of the dynamics, for
small enough dissipation strengths γ, Rakovszky et al. confirm that key hydrodynamical
properties, namely the spreading of correlation functions, agree very well at short times with
exact results on smaller systems. For model one-dimensional spin chain systems and in the
infinite temperature ensemble, the authors use their approach with an extrapolation in γ to
estimate diffusion constants describing long-time transport of conserved quantities (energy
or magnetization), finding good agreement with previous estimates.

In a recent follow-up [23], these authors now give a more detailed justification for their
dissipation-assisted operator evolution procedure, focusing on “backflow corrections” mean-
ing the process of longer operator strings yielding corrections to the coefficients of shorter
operator strings later on in time. The main conclusion is that such corrections are suppressed
exponentially in the cutoff length `∗, justifying it as a parameter that can be used to make
reliable extrapolations in generic settings. A rough explanation of the argument is that the
long-time behavior of correlation functions can be expanded in terms of the dynamics of
the most slowly-evolving operators with which they have non-zero overlap. These slow op-
erators are related to the local conserved quantities of the system such as magnetization or
charge. In contrast, time-dependent processes which involve longer strings of Pauli operators
of length ` are exponentially suppressed in `, and only those with ` > `∗ are affected by the
artificial dissipation process of DAOE, making its cumulative effect exponentially small too.
The authors support these claims with both theoretical arguments based on hydrodynamics
and with numerical experiments on a spin chain and a symmetric random unitary circuit
model.

Looking into the future, Keyserlignk, Pollmann, and Rakovszky ask if the success of their
approach could indicate that hydrodynamic transport properties of ergodic systems are effi-
ciently classically simulable under general assumptions [23]. However, more work is needed
to show their approach works well for finite-temperature systems and in wider classes of

†The length of a Pauli operator string is the number of non-identity Pauli operators occuring within it,
regardless of spatial location.
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models. Also, it would be interesting to see if other related approximation strategies such
as that of White et al. [18] can be connected to the DAOE approach, to give a more com-
prehensive algorithmic view of how thermalization and long-time hydrodynamical behavior
emerge within a concrete MPS or tensor network framework.
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