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The electron-boson problem – i.e. the problem of a dense electron fluid interacting via a
Yukawa coupling with a bosonic field which could represent phonons or the collective fluc-
tuations of an order parameter near a quantum critical point – is one of the key problems in
effective field theory to our understanding of condensed matter systems. When the coupling
is weak, this problem can be treated straightforwardly using the machinery of diagrammatic
perturbation theory. But when the dimensionless coupling, λ, is of order one (as it presum-
ably is in most physically relevant circumstances), this is an example of a strongly correlated
problem, and is highly non-trivial. The Migdal approximation has been claimed to hold
true so long as λ �

√
M/m (where M is an ion mass and m is the electron mass), but

it is by now well documented that this is not generally true.[1] Now, Esterlis et al, in the
highlighted paper, have shown that the Migdal approximation is exact in the N →∞ limit
of an appropriate generalization of the electron-boson problem to the case in which there are
N symmetry-related flavors of fermions and the same number of bosons. This may open the
door to well controlled studies of a number of interesting problems – including the properties
of near quantum critical metals – using already well-developed theoretical technologies.

Needless to say, there have been previous studies that have explored various large N
limits of this problem:

The most common involves N flavors of fermions – an approach that reproduces the
familiar Hertz-Millis theory when applied to the problem of metallic quantum critical points.
At a technical level, it has been shown in Ref. [2] that the 1/N corrections to this theory are
singular, particularly in the important case of d = 2 spatial dimensions. At a physical level,
this limit has the peculiar property that the bosons are highly dressed by their coupling to
the fermions (“Landau damping”), but the fermions remain the long-lived quasi-particles
of a Fermi liquid. For finite N , it can be easily shown that the scattering of the phonons
from Landau-damped quantum critical bosons destroys the Fermi liquid. Thus, at a physical
level, there is a lack of self-consistency to this approach. Clever methods extending the large
N approach with non-local interactions have been proposed to remedy this issue,[3] but the
presence of non-local interactions is an additional serious modification to the microscopic
problem, making the relevance to any particular situation less transparent.
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A more recent “matrix large N” approach to the problem was introduced in Ref. [4];
here there are N flavors of fermion and N2 bosons. This limit has the opposite problem – at
N → ∞ it gives rise to a non-Fermi liquid but includes no feedback of the coupling on the
bosonic sector. Since Landau damping clearly arises for any finite N , here, too, there is a
physical sense in which the large N limit is singular. Again, clever approaches to addressing
this issue have been introduced[5], involving taking the limit that the radius of the Fermi
surface, kF →∞ as N →∞.

A significant feature of the approach presented in the Esterlis et al paper is that the
large N limit is simple and physically reasonable. It reflects corresponding effects on both
the fermions and the bosons, through the familiar self-consistent Migdal integral equations
for the boson and fermion self-energies. No pathologies – such as a violation of the third law
of thermodynamics – arise as N →∞.

A first key step in defining the model was introduced independently in two recent papers,
by Esterlis and Schmalian[6] and by Wang[7] (ESW). Here, in a zero-dimensional (single site)
version of the model, the Yukawa coupling is taken to be a random three-index flavor-tensor,
ga,b,c. In the large N limit, it is argued that the properties of the system are self-averaging,
so one can perform an average over these quantities. This construction was generalized to
higher dimension in Refs. [8], and [9], although in a slightly different context than that
treated by Esterlis et al. It is important to note that all these higher dimensional versions
are not models with disorder; while as in the ESW single site problem, ga,b,c is assumed to
be random, it is taken to be translationally invariant, i.e. the coupling is the same on every
site. [10]

The nature of the solution of the resulting integral equations depends on the assumed
properties of the boson involved. For bosons with the character of optical phonons, these
equations yield standard results, such as the Bloch-Grunheisen expression for the resistivity,
and – extended to allow for an anomalous propagator – the Migdal-Eliashberg theory of the
superconducting state. On the other hand, the equations are highly non-linear and there
is far from an exhaustive understanding of the full set of possible self-consistent behaviors.
This applies in particular to non-Fermi liquid solutions that might represent various classes
of quantum critical phenomena.

As with any such approach, it remains to be determined to what extent the properties of
the N → ∞ problem capture the essential features of the problem with physically relevant
values of N – especially N = 1. While there are no clear physical pathologies associated
with the N → ∞ limit of the model, there has not yet been any successful analysis of the
leading 1/N corrections. In the context of quantum critical phenomena, it is also unclear
how to think about the O(N) symmetry – which is explicitly broken by typical values of
ga,b,c, and is only realized on average. It seems important to explore more fully the relation
between a system with a true symmetry and with only a statistical symmetry of an ensemble.
On the other hand, the ESW model has the great advantage that the N → ∞ analysis is
straightforward, yields explicit expressions for a large range of physical properties, and is
easily generalized to include all sorts of other effects.
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