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People who wish to pack a layer of equally-sized, nonoverlapping discs of diameter o in a
way that uses the least amount of the plane, end up intuitively (or after a few trial-and-error
attempts) placing them on the vertices of a hexagonal (triangular) lattice. Intuition turns
out to be correct in this case, as it has been mathematically proven by Lagrange that the
resulting packing fraction ¢i- = 7/3/6 is indeed the highest that can be achieved by any
two-dimensional spatial arrangement of the circles. The three-dimensional extension of the
problem is more challenging: the Kepler conjecture that another ordered assembly, the fcc
crystal with close packing fraction ¢ff = 7/2/6, is optimal has been proven by Hales only
recently [1]. It is natural, then, to ask whether there is a similar highest packing fraction
for amorphous, non-crystalline arrangements of hard spheres, a quantity known as random
close packing ¢rcp, which has puzzled researchers time and again since its introduction by
Bernal [2, 3, 4]. The most frequently quoted value is ¢rcp = 0.64, which plays also a promi-
nent role in important theoretical insights on the RCP-transition. It has been conjectured to
correspond to the state in which the rate of disappearance of accessible states diverges [5] and
it has also been interpreted as the point in which a dynamical phase transition in biased ran-
dom organization takes place, which is associated with hyperuniformity of the interparticle
correlations [6]. In a recent paper [7], Alessio Zaccone offers a beautiful, analytical answer to
this question, bringing together ideas from liquid-state theory, jamming, and rigidity theory.

First of all, the bad news: the sought-for quantity is not well-defined. Even if one puts
aside complications related to real spheres and effects of friction on their surfaces [8, 9],
the intuitively spontaneous definition of ¢rcp as “the largest possible density an amorphous
assembly of ideal, nonovelapping spheres can attain” is problematic because it is not spec-
ified how amorphous an amorphous assembly can be. Local crystalline arrangements can
increase the overall packing fraction and the question arises how much order can be tolerated
in an amorphous state before it disqualifies being called disordered. Here, Zaccone adopts a
procedure that is based on states that are disordered by construction: he employs structural
information encoded in the radial distribution function (RDF) ¢(r) of a hypothetical, uni-
form, ergodic fluid of hard spheres. An analytical, albeit approximate, solution for the direct
correlation function ¢(r) of the hard sphere fluid exists: the celebrated Percus-Yevick (PY)
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solution, which leads to the determination of g(r) through the Ornstein-Zernike relation [10].
The RDF is an expression of the ratio of the probability density, over that of an ideal gas,
to locate a particle at distance r from any given particle: it is identically unity for a nonin-
teracting system and it also approaches the value 1 at large interparticle separations r for
any interacting one.* In Fig. 1, we show examples of the PY-g(r) for the hard-sphere fluid
at three different values of the packing fraction ¢. As hard spheres are known to undergo
an equilibrium crystallization at ¢peee = 0.494 in coexistence with a fce-crystal that melts
at Pmery = 0.545, the fluid in the density range shown in Fig. 1 is metastable but the PY
solution knows nothing about it. In fact, the PY solution is an approximation that remains
formally valid all the way up to ¢ = 1 (a physically impossible state, as one cannot fill space
with nonoverlapping spheres), where the analytic expression for ¢(r) develops a pole. It is
precisely the properties of this translationally invariant state, which contains no information
about freezing, jamming, or packing, that Zaccone takes advantage of in his approach to
estimate ¢rcp.
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Figure 1: The Percus-Yevick solution for the radial correlation function g(r) of the hard
sphere fluid at three different packing fractions ¢, as indicated in the legend. Note the
appearance of unphysical regions at which g(r) < 0 for the highest packing fraction shown,
¢ = 0.70. The raw data are courtesy of Vittoria Sposini.

The value of the g(r) at contact, g(c™), provides the pressure P(¢) of the uniform fluid
as a function of its packing fraction ¢ through the relation [11]:

7o P(9)

o EeT ¢ +4¢°g(c™). (1)

*Exponentially in general and as a power-law at critical points.



The coordination number ¢ of the fluid, i.e., the average number of particles surrounding
any particle, can also be calculated with the help of g(r) via:

¢ =24¢03 /Ormin r2g(r)dr, (2)

where rp, is the position at which g(r) attains its first local minimum for r > o. For dense
fluids, the typical value ¢ ~ 12 results.

A key element of Zaccone’s argument is that at the random close packing, the metastable
uniform fluid reaches the state of jamming, i.e., particles come at fixed, closest contacts
with one another, blocking relative motion and depriving the system of any further internal
dynamics, save for some fraction of particles that can be rattlers [9]. This view is in agreement
with earlier considerations by Rintoul and Torquato [12], who postulated the emergence of
two branches of P(¢)-curves out of the stable hard sphere fluid upon compression: the first
follows after slow compression and traces the equilibrium transition to a crystal, diverging at
Pree = TV?2 /6. The second results out of a rapid compression, tracing amorphous, metastable
fluid states and eventually diverging at ¢rcp.! Below @peese there is a single, equilibrium
P(¢) curve. Since the PY solution lacks thermodynamic consistency, the prediction it makes
about the value of g(o™) is not exact and thus the pressure obtained by this route (called
‘virial” pressure P,) does not coincide with the ‘compressibility’ pressure P. resulting from
the k& — 0 limit of the structure factor S(k). This discrepancy is cured in an empirical way in
the Carnahan-Starling (CS) equation of state and the associated contact value g(¢™), which
also plays a role in Zaccone’s approach.

At variance with previous approaches, Zaccone neither tries to calculate the metastable
pressure branch by simulation [12, 13], nor does he attempt to determine ¢rcp by expanding
the pressure around this value according to free-volume theory [5], a procedure that also
requires access to highly accurate simulation data deeply into the metastable region. Instead,
the approach of Ref. [7] is based entirely on the PY/CS solution as well as on considerations
of jamming and mechanical stability, as explained below.

The first ingrediend of Zaccone’s analytical approach to the problem is to consider the
consequences of the fact that the pressure has to diverge at close packing, since the state
is collectively jammed. Structurally, the close packing implies the existence of permanent
contacts between neighbors, thus the RDF has to develop a §(r — o)-peak at ¢ = ¢rep,
consistently with the divergence in the pressure, as expressed by Eq. (1). An extreme
example is the crystalline close packing ¢{L, where the entire (angularly-averaged) RDF is
just a superposition of -spikes centered at the distances r; of the fcc-coordination shells,
ie.

e (r) = g;0(r —ry), (3)

j=0

"Evidently, being an equilibrium quantity, the pressure has a unique value for every value of ¢ and thus
only the first curve is a true pressure. Nevertheless, a pressure can be assigned by analogy to an ensemble of
metastable, ‘supercooled’ fluids for which crystallization is avoided for times much longer than the microcopic
scales as a result of the compression protocol or of specific simulation moves that prevent crystallinity from
growing.
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Figure 2: A schematic example of the terms appearing on the right-hand side of eq. (4). The
raw data are courtesy of Vittoria Sposini.

with appropriate weight factors g; and ry = 0. The RDF of the amorphous, close-packed
states, call it gCP'(r), is now postulated to be a hybrid between the continuous shape of the
uniform, ergodic, albeit metastable fluid and the discrete form of the closed-packed fce-solid,
namely

Jam (1) = ge(r) + gne(r) (4)

where ggc(r) is the RDF from all contributions beyond contact and g¢.(r) contains the afore-
mentioned Jd-contribution, expressed as:

9:(r) = gog(e")d(r — o), (5)

where g(o™) is taken to be the contact value of the RDF of a uniform fluid, obtained from
a theory that is completely agnostic over the possibilities of both crystalline ordering and
jamming/random close packing.

In Fig. 2 we show a sketch of such a RDF. The appearance of a d-contribution at contact
is consistent with simulations results by Donev et al. [14], who have additionally established
that the function gpc(r) features a split second peak at r = 20 as well as kinks [6, 14].
Accordingly, the curve gpc(r) shown in Fig. 2 is only a schematic result shown for demon-
stration purposes only; its precise form is irrelevant in Zaccone’s calculation anyhow. One
can now define a coordination number z arising from those particles in permanent contact
only, by introducing a more restricted form of eq. (2) appropriate for RDF’s that contain
d-contributions, namely
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which, in conjunction with eq. (5), and given that the RDF has to vanish for r < o, implies
g = 24¢ GO g<0-+)7 (7>

with Gy = go/o. Within the Percus-Yevick approximation, the dependence of g(o™) on ¢
reads as:

o 1+0.50
g(c™) 1=op (8)

Eq. (5) contains a drastic and bold assumption. The dependence the overall prefactor of
the d-function of g.(r) has on the packing fraction ¢ is assumed to be dictated by the value
at contact of the RDF of a putative ergodic liquid, g(c™); the additional factor gy plays
the role of an overall normalization constant that does not depend on concentration. There
is no a priori reason why this should be valid; even the meaning of such a fluid at deeply
metastable densities is questionable and Zaccone is indeed very careful not to raise any such
claims. The only implicit statement hidden beyond the choice expressed in eq. (5) is that
the growth with density of the coordination number z in states with particles in permanent
contact is following the associated increase of the contact value of g(r) of (metastable)
ergodic states in exactly the same way. What makes the assumption even more daring is the
fact that this dependence is read off from the Percus-Yevick solution for hard spheres, for
which not only is the value g(o*) inaccurate at high densities but the whole g(r) develops
negative parts for ¢ 2 0.60, rendering the RDF unphysical (see Fig. 1). Nevertheless, the
approach, supplemented by a definition of random close packing based on a statistical view
of mechanical stability, yields remarkably accurate results.

To proceed further one needs two additional ingredients: a reference state to calibrate
the theory, so as to be able to fix the yet undetermined value of the constant G as well as
a working definition of what random close packing means. For the latter, Zaccone resorts to
previous work by himself and Scossa-Romano [15], which showed that mechanical stability
of elastic spheres in d = 2 and d = 3 dimensions is marginal when z = 2d, in agreement
with Maxwell’s isostaticity criterion [6]. Accordingly, it is asserted that any amorphous
packing with average coordination number z < 2d is not rigid and thus a packing fraction ¢
resulting in such an inequality will necessarily be below ¢rcp. As systems with z > 2d are
mechanically stable, the threshold z = 2d is used here to define the random close packing in
a precise, albeit statistical way.* Accordingly, by setting z = 6 as the condition of random
close packing at d = 3 and using eqgs. (7) and (8), an implicit equation for ¢rcp is obtained:

1+40.5¢pcp 1

resulting into

142G, 14+2Go\? 1
Prep = | T~ | — - . (10)
1-2G, 1-2G, 1 —2G,
fWhichever value is obtained cannot exclude that there might exist particular, stable random close
packings with ¢ # ¢rcp.




To fix the constant G, Zaccone proceeds now to his final, bold assumption: the range
of validity of the theory is also extended to jammed ordered states and, in particular, all
the way to the extreme value ¢fL = 7/2/6 with its coordination z = 12. Application of

the same procedure based on eqs. (7) and (8), yields the estimate of Gy calibrated on this
crystalline close-packing state as:

G (6—7T\/§)2
0 7T\/§(12 + 7r\/§)

Subsitution of eq. (11) into eq. (10) now yields the result

=~ (.033 189 4. (11)

drep = 0.658 963. (12)
The same approach applied mutatis mutandis in d = 2 yields
PR — 0.886 44. (13)

Both estimates in eqgs. (12) and (13) above are extremely satisfying because they fall
within the limits set by various (real or numerical) experiments that have determined ¢rcp
both in d = 3 and in d = 2. If the CS equation of state for hard spheres is adopted, the
estimate ¢rcp = 0.677 376 results. This is interpreted by Zaccone as the realization of a
different ‘protocol’ for creating random packing, akin to the various numerical protocols
of imposing disorder in crowded hard spheres that result in different random-close-packing
outcomes.

These are beautiful findings and it is remarkable achievement that one can obtain an
analytical result to such a difficult problem. The question arises, then, why exactly is this
working so well? As someone with a (long) past in liquid state theory, I have learned not to
trust integral equations in general far beyond the crystallization transition. Indeed, using,
e.g., structure factors whose maximum exceeds the Hansen-Verlet value Sy.x = 3.0 has to
be done with care and liquid state data beyond the parameters set by the Mode-Coupling
Theory ideal glass transition are almost never reliable. Even less reliable is the PY solution
for hard spheres, for which already at ¢ = 0.62 the RDF develops negative parts, an absolute
no-go. And yet, here the PY solution is employed all the way to its extreme: an expression
that diverges at ¢ = 1 is used, data are calibrated at ¢ = 0.74 and then the parameter G
extracted there is employed to yield a remarkably good value of ¢prcp. Neither the pressure
of the metastable fluid branch [5] nor the RDF of the crowded amorphous states [14] bear
any resemblance to their PY-counterparts. How is this all possible?

WEell, to begin with, the worst of all aforementioned problems, i.e., the negative parts
of the PY-RDF' is immaterial for Zaccone’s argument, as the only feature of this function
entering his argument is its contact value g(o™), and this remains nicely positive, growing
monotonically with ¢ and diverging at ¢ = 1. The crucial reason why the rest works,
probably lies in the fact that the PY solution is indeed completely ignorant of any order or
close packing and merely gives a statistical estimate of the degree of crowding as density
grows, which is precisely what is asked for in Zaccone’s approach. Indeed, one is not looking
for the RDF of the real, metastable fluid, as this contact value will necessarily diverge at
orcp. Close-packed, ordered states become unreachable if one follows this path, therefore the



calibration of the strength of the d-function in eq. (5) would not be possible. What is needed
here is some underlying, fictitious uniform state, spanning the whole density domain, which
possesses a RDF that captures, in broad terms, the increased crowding upon compression. It
is even immaterial whether this state truly exists: inaccuracies in the PY (or CS) g(c™) are
compensated by the calibration of the prefactor Gy on some standard, ordered close-packed
state. In this sense, it is instructive to attempt, in d = 3, a different calibration by using the
bec lattice with z = 8 and ¢tF = 7v/3/8 [16] to determine G according to eqgs. (7) and (8).
One may hope to improve the result since the PY solution is now applied at a lower packing
value than for the fcc close packing. It is straightforward to show that we now obtain the
value

2(8 — m/3)?
. 37v/3(16 + m/3)
Subsitution of eq. (14) into eq. (10) now yields the result
drep = 0.643 320, (15)

=~ ().037 406 8. (14)

cf. egs. (11) and (12), respectively. The latter value is practically coinciding with the most
frequently quoted value ¢rep = 0.64 [5, 6] but this could be just a mere numerical coinci-
dence.

As a final remark, and extending somewhat Zaccone’s considerations, let us take a closer
look at the behavior of egs. (7) and (8) and their solution at some interesting, limiting cases
for Gy. Solving for ¢(z,Gy), dropping for now the condition z = 2d and keeping a general
G without reference yet to any kind of close packing, we obtain the two solutions:

(24 12G, 2+ 12Go )\ 2
¢=(2,Go) = (2—12G0) qE\/(2—12610) 2 —12G, (16)

where, for small values of Gy the minus-sign solution must be chosen but for high values of
Gy the plus-sign, so that 0 < ¢ < 1. There are two limits in which the solution becomes
z-independent: first, as Gy — 07, ¢ — 17, corresponding to the hypothetical case in which
the system does not jam at any ¢ < 1. Then, consistently with the properties of the structure
of this putative system, the approach predicts a random close packing at ¢rcp = 1, which
is the RCP-value of the Percus-Yevick solution. At the other extreme, we can prescribe to
the system some very high value of G, roughly corresponding to a strong stickiness on the
surface of the hard spheres, and then, letting Gy — 00, eq. (16) now predicts ¢grcp — 0T,
independently of z. This is strongly reminiscent of the ‘empty liquids’, i.e., hard sphere
colloids endowed with very strong, patchy, associating interactions that lead to the formation
of very low density arrested states with a low-coordination, network structure [17].

There are probably many other ways of thinking about the findings and the interpretation
of the work discussed in this comment [7]. In any event, Zaccone’s very fresh, original, and
physically insightful approach to an old problem, provides us with an analytical solution to
it. Moreover, it carries strong potential for extensions to anisotropic shapes and mixtures,
opening up new ways and motivating us to think about and appreciate anew the power and
beauty of the Percus-Yevick solution for hard bodies in d-dimensions.

[ thank Vittoria Sposini for the raw data shown in Figs. 1 and 2 and for helpful discussions,
and Jan Smrek for helpful discussions.
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