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While active matter in general is the subject of extremely active current research, the role
of external spatial anisotropy is still largely unexplored. Yet, such an anisotropy is effectively
present in most experimental conditions where active systems are investigated: for instance,
the presence of weak external fields typically biases the dynamics of particles’ orientation
along some directions; otherwise, geometrical constraints of specific systems can explicitly
break rotational symmetry at the microscopic level. In both cases, the system is not invariant
under infinitesimal rotation of all the particles’ orientation vectors, i.e. θi → θi + dθ.

Here we comment on the paper by Solon et al. in which the authors assess, in a quanti-
tative way, the role of anisotropy on the collective behavior in a class of active clock models
in two spatial dimensions. These models describe the dynamics of self-propelled particles
diffusing on a lattice. The probability to jump between sites is biased by the direction
of an individual orientation vector that can only take q discrete values. The orientation
of each particle is subject to local alignment with its neighbors. The cases q = 2 (active
Ising model, AIM [1]) and q → ∞ (Vicsek model, VM [2]) are two paradigmatic instances
of aligning active matter, which exhibit a flocking transition with coexistence between an
apolar disordered state and a polar state with long-ranged order.

Importantly, although the flocking transition emerges through a phase separation in both
AIM and VM, yielding a coexistence regime where polar bands of aligned units travel in an
apolar background, there are still important qualitative differences between these models. In
AIM, the system phase separates into a single, dense polar band surrounded by a gas-like,
apolar phase (macrophase separation); in the fully ordered state, the correlations are short-
ranged, no giant density fluctuations appear, and the global orientation is pinned throughout
the dynamics [3]. In contrast, for VM, phase separation occurs with many traveling polar
bands separated by a dilute apolar gas (microphase separation); in the fully ordered state,
correlations are scale-free, giant density fluctuations arise, and there is a wandering global
orientation [4].

The main mechanism underlying these differents scenarios, namely either macrophase
or microphase separation, is the existence (breakdown) of continuous rotational invariance
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for VM (AIM). For equilibrium models of order-disorder transitions in two dimensions, it is
well known that, whenever q > 4, there is a long-range (LR) ordered phase below a critical
temperature Tq, followed by a quasi-long-range (QLR) ordered phase at Tq < T < TBKT [5].
In short, anisotropy matters in equilibrium since, even in the thermodynamic limit of large
system size L, one can induce a transition from QLR order to LR order by tuning temperature
(Fig. 1). Besides, note that the critical temperature Tq vanishes for q → ∞, owing to the
celebrated Mermin-Wagner theorem for equilibrium systems [6], which precludes any LR
order for the XY model in 2D.

Active clock models evade equilibrium constraints, enabling LR order at finite tempera-
ture even for systems with continuous symmetries, such as in VM. The question addressed
by the authors is then whether, in the thermodynamic limit, anisotropy for any finite q larger
than 2 leads the system to have the phenomenology of either AIM or VM. For instance, in the
coexistence region, can one induce a transition from microphase to macrophase separation
by changing q? The answer provided by the authors in [7] is that, at large L, any active clock
model at finite q falls into the class of AIM, namely q = 2. This behavior is made evident
by quantifying the transverse magnetization structure factor in numerical simulations, which
allows to extrapolate a crossover length ξq: for system sizes L� ξq, the system exhibits AIM
behavior, whereas it exhibits VM behavior for L� ξq. The origin of ξq is then rationalized
through two approaches:

• A mean-field hydrodynamic theory which amounts to introducing an effective particle-
based potential Vq, with explicit dependence on anisotropy q, acting on individual
orientation. This potential accounts for the energy barriers created by anisotropy
at finite q, which impede the rotation of the orientation vector. Interestingly, this
microscopic potential damps the perturbations of the homogeneous ordered state at
hydrodynamic level, with a damping length comparable with the crossover length ξq.

• A scaling argument to assess the relevance of Vq in the thermodynamic limit of large
L. The authors extract a critical length scale Lc above which the anisotropy of
microscopic alignment cannot be neglected at macroscopic level. They show that
Lc ∼ exp[q2σ2/(2z)], where σ2 is the variance of polarization order around the ho-
mogeneous ordered state, and z ' 1.33 a dynamic exponent. Measuring numerically
the variance σ2 leads to values of Lc in good agreement with the crossover length ξq.

Overall, the paper describes how two different phenomenologies can actually arise from
the same dynamics depending on system size. While the ultimate fate of any anisotropic,
finite-q system is the same as that of AIM in the thermodynamic limit of large L, the paper
quantitatively predicts the crossover length below which anisotropy becomes irrelevant. In-
terestingly, such finite-size effects are indeed to be taken into account in most experimental
realizations of active matter, where the number of units is typically far from the thermody-
namic limit, with drastic consequences on the emerging phenomenology. Two main research
directions are left open by the authors: i/ a physical interpretation, based on microscopic
mechanisms, to rationalize the emergence of either macrophase or microphase separation
scenarios, as observed respectively in AIM and VM model, and ii/ an analytical prediction
of polarization fluctuations σ in terms of microscopic control parameters, such as density
and strength of alignment.
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Figure 1: (Top left) Phase diagram in terms of anisotropy parameter q and temperature T
for the equilibrium clock model in the thermodynamic limit of large system size L, following
the scaling argument in [7]. When q ≤ 4, there is only an Ising-like transition from LR
order to disorder increasing T . When q > 4, there is LR order for T < Tq, QLR order for
Tq < T < TBKT, and disorder for T > TBKT. When q → ∞, namely for XY model, there
is only QLR order since Tq = 0. (Top right) Sketch of the (q, T ) phase diagram at finite
L for the active clock model, where T is proportional to the inverse of aligning strength;
adapted from Fig. 3(c) in [7]. The polar liquid phase has either VM behavior (LV) or AIM
behavior (LI). Besides, the coexistence region shows either microphase (CV) or microphase
(CI) separation. Increasing q, it is always possible to find VM behavior at finite L, but the
crossover value qL diverges with L. Hence, in the thermodynamic limit, any active clock
model is in the same class as AIM (q = 2). (Bottom) Snapshots of density fields showing
crossover from macrophase to microphase separation when increasing q at fixed L and T ;
light green corresponds to travelling polar bands at high density, blue indicates dilute apolar
regions. Adapted from Fig. 3(b) in [7].
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