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Writing in this Journal Club a little more than a year ago, I flagged a flurry of activity
exploring a new set of questions related to “hybrid” quantum dynamics in models where
unitary evolution is punctuated by measurements. As sketched in my JCCM article, the
early excitement centred on a phase transition where the generation of entanglement by the
unitary evolution is sufficiently inhibited by measurements to trigger a qualitative change in
the late-time state of the system. Many open questions remained, but diverse aspects of the
problem have since been explored in several works. For the most part, however, the focus
has been on models of qubits on a lattice with local gates, designed to resemble quantum
computing devices, rather than the solid-state or ultracold atomic gas settings familiar to
most condensed-matter physicists. A further challenge is that — with a few exceptions [1] —
nearly all the proposals for interesting phenomena rely on post-selecting on the outcomes of
measurements, which while conceptually reasonable is exponentially prohibitive in practice.

The recommended paper by Garratt et al partially addresses both of these issues. They
consider a class of measurement-driven transitions in a Tomonaga-Luttinger liquid, which
is the low-energy effective description of a wide variety of one-dimensional systems. They
also propose creative ways to evade postselection. Together, these gently nudge the study
of ‘measurement-induced’ phenomena towards a richer variety of experimental settings than
proposed to date.

The basic problem posed by Garratt et al is to start with the ground state |ψg.s.〉 of
some local Hamiltonian H, and subject it to a spatially extensive set of weak local measure-
ments. Such measurements modify the amplitudes of different contributions to the many
body state, but crucially do not fully disentangle the different system degrees of freedom, so
that the final state after measurement is still nontrivially entangled. The question they ask
is: to what extent do the measurements modify asymptotic properties of the state, such as
the long-distance behaviour of equal-time correlation functions? For this to have maximally
interesting answers, one should pick |ψg.s.〉 that have long-range entanglement, since this
will be the most sensitive to the the influence of weak measurements. That said, too much
entanglement is also not good: for example thermal states are highly entangled, but mea-
suring one observable provides almost no information about other observables, and hence
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cannot modify expectation values far away. The ideal choice is thus a ground state with
algebraic correlations between observables, since these typically have entanglement scaling
intermediate between the area law of gapped ground states and the volume law exhibited
thermal states. Such states usually appear at quantum critical points or in gapless phases
of matter, which arise in a variety of settings in condensed matter physics.

Accordingly, the authors’ choice of H is a simple model that supports critical entangle-
ment without fine-tuning: namely, a single-channel gapless Tomonaga-Luttinger (TL) liquid.
This emerges (for example) as the bosonized description of a spinless fermion chain [2]. Given
the notorious differences in bosonization convention between different authors, it is perhaps
worth writing down some details to fix notation for the rest of the commentary. At long
wavelengths, the imaginary-time action, appearing for instance in the path-integral repre-
sentation of the partition function Tre−βH , is that of a free compact∗ bosonic field

S[φ] =
1

2πK

∫
dx

∫ β

0

dτ
[
(∂τφ)2 + (∂xφ)2

]
(1)

where β = 1/kBT is the inverse temperature. The field φ is related to the electron density
via n(x) = −π−1∂xφ+ π−1 cos[2(kFx− φ(x))] in units where the lattice spacing is unity, kF
is the Fermi velocity, and we higher oscillations of the density beyond those at 2kF have
been elided. As is well-known, the correlations in the chain are governed by the ‘Luttinger
parameter’ K, with K = 1 corresponding to the case of non-interacting fermions. While the
system remains critical (and hence gapless) for all values of K in the absence of a lattice
potential, the dominant correlation functions depend on K: equal-time correlations of the
density and the phase θ (canonically conjugate to φ) in the TL ground state are given by

〈n(x)n(0)〉 ∼ A

x2
+
B cos(2kFx)

|x|2K
, 〈eiθ(x)e−iθ(0)〉 ∼ 1

|x|1/2K
(2)

where A,B are real numbers, and the two terms in the first equation capture the smooth (q =
0) and q = 2kF ‘charge density wave’ (CDW) components of the density. Physically, K > 1
for attractive interactions and K < 1 for repulsive ones; this is reflected in the dependence
of the correlations on K. To wit, smaller values of K correspond to slower decay of CDW
correlations; larger values of K correspond to a slower decay of phase (superconducting)
correlations. Note that when the charge decays more slowly, the phase decays more quickly,
and vice versa, consistent with the fact that they are conjugate variables. (Of course, absent
a lattice no true long-range order can be established due to the Mermin-Wagner theorem.)

Weak measurements are introduced as follows. Consider measuring the density locally
at a point x0, e.g. by shining light on the sample and measuring the scattered photon with
a detector that has two possible states, |0〉 and |1〉. If no particle is present at x0 then the
detector remains in its initial state |0〉, but if a particle is present at x0, it either remains in
|0〉 or else ‘clicks’ i.e. changes its state to |1〉. Thus the ‘no click’ outcome leaves the density
uncertain, thereby only weakly suppressing the particle density at x0. This is in contrast to
a perfect detector, where ‘no click’ would definitely correspond to the absence of a particle.

Garratt et al build a field-theoretic picture of the post-measurement state as follows: they
first write the ground-state density matrix |ψg.s.〉〈ψg.s.| as the β →∞ limit of the imaginary-
time evolution under e−βH , with ground-state correlations then corresponding to equal-time

∗This simply means that φ and φ + 2π label equivalent configurations.
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correlators in this problem, which is controlled by the action S[φ]. Using the standard
technology of quantum measurements, for the set of outcomes m, the post-measurement
state is |ψm〉 = Mm|ψg.s.〉/

√
pm, where Mm is a non-unitary operator encoding the weak

measurement with outcome m, which occurs with Born probability pm = 〈ψg.s.|M2
m|ψg.s.〉.

Putting these ideas together, in the TL case correlations in the state that results after
measurement outcome m can be computed via a path integral involving the action (1). Since
the choice of measurement commutes with both the field φ and the observable of interest
(the density), and that acts throughout space, the measurements appear as perturbations of
the one-dimensional surface at τ = 0 in the two (spacetime) dimensional path integral. This
translates the question about the longwavelength correlations in the post-measurement state
to one of whether the perturbations representing Mm alter the correlations at τ = 0, which
in turn can be couched as question of relevance or irrelevance within a renormalization-group
approach to the TL ground state.

The challenge confronting the authors of the recommended paper is how to extract non-
trivial consequences of measurement. Naively averaging observables over measurement out-
comes will not do: this is because averaging quantities linear in the density matrix with the
Born probabilities pm simply produces dephasing in the basis of measurement operators (this
is essentially what is captured by the Lindblad dynamics of open quantum systems [3]). In
order to average quantities nonlinear in the density matrix, such as squared correlators, they
employ the ‘replica method’, a standard technique for taking formal powers of complicated
objects (such as partition functions) that has been often invoked in studies of hybrid dy-
namics. Since the technicalities of the replica field theory calculations are lucidly explained
by the authors, I focus the rest of this commentary on their results.

The first result considers a single very special ‘no click’ state |ψn.c.〉 by post-selecting the
outcome in which none of the detectors register the presence of a particle with certainty. The
field-theoretic formulation of this problem leads to an beautiful conclusion: the problem of
understanding a quantum state perturbed by measurements at all all locations in space x but
at a single time τ = 0, can be mapped to an ‘impurity problem’ where the system is perturbed
by a Hamiltonian that acts in a spatially local faction at x = 0 but at all times τ . In the path
integral language one can view this as a Wick rotation that exchanges space and (imaginary)
time, enabled by the Lorentz invariance of long-wavelength physics of the Luttinger liquid.
Impurity problems have a storied history dating to studies of the Kondo problem, but the
most salient result is the seminal analysis of a single scatterer in a Luttinger liquid by Kane
and Fisher (KF, [4]). Translating KF’s renormalization group analysis to the measurement
problem, Garratt et al argue that, if the Luttinger parameter K > 1, the measurements
are RG irrelevant and |ψn.c.〉 are |ψg.s.〉 have identical, algebraic correlations. In contrast if
K < 1, then even for an arbitrarily weak measurement the algebraic decay of the correlations
are modified: intuitively, since ‘no click’ measurement weakly suppresses density fluctuations
and hence also the correlations of the conjugate phase variable (Intuitively, fluctuations of
the phase are enhanced since we have made the density a bit more certain by even a weak
measurement.) This is manifest in faster power-law decays: for example, eiθ now scales as
x−1/K , i.e. decays twice as fast as in the unmeasured system.

The second set of results examines the more general situation with an ensemble of out-
comes. By considering suitably nonlinear observables using the replica field theory, the
authors demonstrate that there is a phase transition as a function of K at the level of this
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ensemble. Since the ‘no click’ outcome is a very special tail state in this ensemble, the nat-
ural expectation is that the ensemble transition occurs at some critical K < 1. The authors
establish a critical value of K = 1/2 if the average over the ensemble is performed with the
Born weights, but introducing a bias towards outcomes with a subextensive number of clicks
(that are thus in a quantifiable sense ‘near’ the no-click outcome) then the transition shifts
back to K = 1 — essentially capturing the stability of the K = 1 transition to weak disorder
à la the Harris criterion [5].

A final idea introduced by the authors is a possible route to evading postselection, which
requires some explanation. Naively, instead of postselection one could instead try to ‘av-
erage over the ensemble’ by running the experiment multiple times and summing over the
results, since each outcome m appears with probability pm automatically by the Born rule.
Recall that ensemble-averaged quantities that track the transition are must be nonlinear in
expectation values, e.g.

∑
m pm〈O〉2m where O is some observable. Why not just use multiple

runs to estimate this sum? To see why this fails, consider a single run of the experiment
that prepares |ψm〉. Measuring observable O from this experiment produces an estimate
Oest
m that must be an eigenvalue of O. Squaring this eigenvalue and averaging over many

runs just produces the average of 〈O2〉m over the ensemble of outcomes, rather than the
desired average of 〈O〉2m. So the authors propose a different trick: they sum over many
runs, but only after weighting 〈O〉m by 〈O〉m,C , which is an expectation value produced from
a classical simulation. One can then compare two quantities: a ‘quantum-classical’ probe
EQC [O] =

∑
m pm〈O〉m〈O〉m,C obtained by running the experiment multiple times and aver-

aging with this reweighting, and a ‘classical-classical’ probe ECC [O] =
∑

m pm〈O〉2m,C . The
authors argue that a coincident transition with K in both probes signals a nontrivial re-
structuring of the quantum ground state. The overhead of implementing this approach —
which evades post-selection at cost of a classical simulation, and hence in essence pits the
complexities of these two problems against each other — will depend on the system under
study and may require various tricks such as coarse graining. Nevertheless, the idea is an
intriguing one, and elucidating its complexity in various cases is an important goal.

A variation in this work, compared to many other studies of measurement-induced critical
phenomena, is that the tuning parameter is not the rate of measurement, which is fixed.
Rather, the transition in the post-measurement state is capturing a qualitative change in the
nature of the underlying quantum critical system, by probing its correlations in a nontrivial
way. While specific correlations that change in this example — such as the density — can
be accessed by other more conventional techniques, it is intriguing to ask if the presence
of subtle and hard-to-measure correlations, such as those encoding topological properties,
can similarly trigger qualitative changes upon measuring simpler observables. If so, this
might provide a new window into complex quantum-mechanical ground states. Given the
emergence of a variety of new platforms such as Rydberg atom arrays that combine the
analog simulation capabilities of traditional solid state systems with the programmability
and measurement ability of digital quantum devices, it would appear that the time is ripe to
consider such questions seriously. The present paper is a welcome first step in this direction.
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