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Kitaev’s celebrated model of a S = 1
2

spin-liquid with two-body interactions on the hon-
eycomb lattice [1] is a beautiful example of fractionalization. The Hamiltonian is deceptively
simple: S = 1

2
spins on each site of the honeycomb lattice, interacting with their nearest

neighbors via XX ′, Y Y ′, or ZZ ′ Ising interactions, according to the bond type α ∈ {x, y, z}.
Then for every hexagonal plaquette p, the product Wp of spin operators, as shown in fig. 1,
commutes with all terms in H, as well as with all other Wp′ , which may then be fixed1. In
Kitaev’s solution, the spin operators are expressed in terms of four Majorana fermions, with
σα = icbα. The constraint cbxbybz = −iXY Z = 1 at each site guarantees that XY = iZ and
that the local Hilbert space is two-dimensional. In terms of the Majoranas,

H =
∑
α

Jα

type−α∑
〈ij〉

iuij ci cj (1)

where each uij = −ibαij

i b
αij

j = ±1 is a Z2 gauge field and thus the interacting spin Hamilto-
nian may be written in terms of a single species of noninteracting Majorana fermion hopping
in a fixed background Z2 gauge field. The gauge-invariant content of the background is in
the Z2 plaquette fluxes, given by the product

∏
〈ij〉∈∂p uij counterclockwise around p, and is

equal to −Wp . The ground state of H is that which minimizes the fermionic energy among

1On a torus, one has
∏

pWp = 1. There are also two independent commuting loop operators extending
across the cycles of the torus, Vx =

∏
iXi along a loop of alternating Y Y ′ and ZZ ′ bonds, and Vy =

∏
i Yi

along a loop of alternating XX ′ and ZZ ′ bonds. Both Vx,y commute with H and all the Wp .
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Figure 1: The Kitaev honeycomb model: (a) The arrangement of bond interactions. (b)
The plaquette stabilizer Wp is a product of spin operators around hexagon p. (c) The phase
diagram in the Jx + Jy + Jz = 1 plane exhibits gapped and gapless Z2 spin liquid phases.

all the 2Nc+1 gauge-inequivalent backgrounds, where Nc is the number of hexagonal plaque-
ttes2; the number of lattice sites is N = 2Nc. The phase diagram in the Jx + Jy + Jz = 1
plane exhibits gapped and gapless Z2 quantum spin liquid (QSL) regimes3.

Recently, two groups have investigated the dynamics of S = 1
2

spins on the honeycomb
lattice subjected to repeated measurements [2, 3]. Their protocol is as follows. First initialize
the system into a maximally mixed density matrix ρ(0) = 2−NI, corresponding to an infinite
temperature state. At each subsequent micro time step, choose with probability pα a random
bond of type α and perform a projective measurement of the two-qubit operator σαi σ

α
j on

that bond. The time t is defined in units of full sweeps, i.e. N consecutive random projective
bond operator measurements.

The iterated projective measurements of the monitored Kitaev spin liquid (MKSL) are
one example of a broad class of monitored quantum dynamics [4], which studies properties,
such as entanglement, of the trajectories taken by quantum many-body systems. A projector
u satisfies u = u2 = u†, and has eigenvalues 0 or 1. The probability that u = 1 is given by
the Born rule, Prob(u = 1 | ρ) = Tr(u ρ). After measurementM, the density matrix is given
by [5]

M : ρ 7→ M(u | ρ) =
u ρu
Tr(u ρ)

. (2)

Measurement can affect entanglement properties, as the following two trivial examples con-
firm. First, starting with any N -spin density matrix, perform a sequence of single spin
measurements on each of the sites. This collapses the initial state to a product state, and

2This accounts for Nc − 1 independent plaquettes, plus the two independent Wilson loops on the torus.
When the lattice has reflection symmetry in a line which does not intersect any lattice sites, the job of finding
the minimizing flux background is greatly simplified by a theorem due to E. Lieb.

3Breaking time reversal symmetry in the gapless phase opens a gap and results in nonabelian excitations
corresponding to Majorana fermions bound to Z2 plaquette flux vortices.

2



Figure 2: Monitored Kitaev spin liquid: (a) Steady state phase diagram. (b) Purification
dynamics and behavior of the entropy S. For the blue curve, the initial state is mixed, but
with a frozen flux configuration. The number of plaquettes is L2. From ref. [2].

any initial entanglement entropy is completely lost. Second, starting with the pure product
state |Ψ 〉 =

∏
n |↑ 〉n, perform a sequence of measurements of the products X2jX2j+1 on half

of the bonds. This has the effect of replacing |↑↑ 〉 → 2−1/2
(
|↑↑ 〉 ± |↓↓ 〉

)
on each of the

measured bonds, where the sign corresponds to the measurement outcome. Thus, the initial
unentangled product state is replaced by 1

2
N singlets. Two special features of the MKSL

protocol are essential to their monitored dynamics and steady state spin liquid properties:
(i) the bond operators which share a common site do not commute with each other, and (ii)
each bond operator commutes with all the plaquette operators Wp .

While the Hilbert space of the Majorana partons at each site is four dimensional, and
one must apply the projector P =

∏
i
1
2

(
1 + cib

x
i b
y
i b
z
i

)
to the Majorana degrees of freedom in

order to obtain the (two-dimensional) Hilbert space of spins, all spin operators and products
thereof (e.g., the bond operators σαi σ

α
j ) commute with P . This allows the analysis the parton

dynamics of the unprojected density matrix ρf (t) in the enlarged Hilbert space [2].

Two remarkable things happen under the MKSL protocol. First, the density matrix,
when expressed in terms of the Majorana partons, purifies , and on a time scale t∗ approaches
the form ρf (t) = ρc(t) ⊗ ρb , where ρb = |Ψb 〉〈Ψb | is a pure state [2]. The subsequent en-
tanglement dynamics are described in terms of the c partons. Second, as a function of the
probabilities {px, py, pz} there are two exotic steady-state phases (fig. 2a): (i) a topologically
ordered phase, in which the monitored pure states exhibit topological order, related to that
of the Kitaev toric code, as well as area law entanglement and quantized topological entan-
glement entropy Stop = − log 2, and (ii) a critical phase, in which the entanglement entropy
of a subsystem A scales as SA = c0 LA logLA + . . . , with c0 a nonuniversal constant.

The purified b-parton density matrix takes the form |Ψb 〉〈Ψb | =
∏

p
1
2
(1 ±Wp), corre-

sponding to a frozen configuration of plaquette Z2 fluxes for t > t∗. In the Hamiltonian
Kitaev model, different flux configurations result in changes in the interference properties
of the hopping c-partons, leading to changes in the energy spectrum. For the monitored
dynamics, however, the distribution of these plaquette fluxes does not much affect the sub-
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Figure 3: A projective measurement of a bond spin operator acting on a state |Ψc 〉 in which
the c-partons are paired into complex fermions results in a pairing reassignment. Adapted
from ref. [2].

sequent c-parton entanglement dynamics for t > t∗, which are illuminated by the following
considerations. A single localized fermionic orbital has a two-dimensional Hilbert space. For
Majorana fermions, this degree of freedom is distributed nonlocally: one can form a complex
fermion χ = 1

2
(ck + icl) from Majoranas on two different sites k and l. One can loosely

say that the Hilbert space for a single Majorana is of dimension
√

2. By pairing up the N
Majoranas, one obtains 2N/2 states, and multiplying this by the 2N/2 plaquette flux config-
urations and one recovers the 2N dimensional Hilbert space of the original spins. Starting
with a state |Ψc 〉 in which the c-partons are all paired up, measurement of a bond operator
results in a reassigned pairing, as depicted in fig, 3. Explicitly, starting from a state |ψ 〉 in
which ic1c3 = ic2c4 = ibz1b

z
2 = 1, we apply the bond projector 1

2
(1 + Z1Z2) = 1

2
(1 + c1c2b

z
1b
z
2)

and obtain a state with ic2c1 = ic3c4 = ibz1b
z
2 = 1, viz.

|ψ′ 〉 =

(
1 + c1c2b

z
1b
z
2

2

) |ψ 〉︷ ︸︸ ︷(
1 + ic1c3

2

)(
1 + ic2c4

2

)(
1 + ibz1b

z
2

2

)
|ψ0 〉

=

(
1 + ic2c1

2

)(
1 + ic3c4

2

)(
1 + ibz1b

z
2

2

)
|ψ′0 〉 ,

(3)

where |ψ′0 〉 = 1
2
(1 + ic1c3)|ψ0 〉.

In the initial maximally mixed state, the von Neumann entropy S = −Tr(ρ log ρ) is
S(0) = N log 2. In the topologically ordered phase, as shown in fig. 2b, S(t) drops rapidly
to S(t∗) = 2 log 2 on a time scale t∗ ∼ O(logL), where L is the linear dimension. This value
is associated with the information contained in the two independent topologically nontrivial
Wilson loops wrapping around the torus. Ultimately, on a time scale tpurif ∼ O(expL), the
system completely purifies. Thus, two logical qubits are protected for an exponentially long
time in the system size; these qubits are also encoded in the Hamiltonian ground state. The
area-law entanglement entropy in this phase is also found in the gapped Z2 spin liquid phases
of the Hamiltonian ground state, and in general the properties of the steady state monitored
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phase are quite similar to those of the gapped Z2 Hamiltonian QSL phase.

In the critical phase, and starting with a mixed state with a frozen flux configuration,
the von Neumann entropy drops as a power S(t) ∼ L2/t, and ultimately purifies4. The
entanglement entropy behaves as LA logLA, similar to what is found in systems with a
Fermi surface, whereas the Hamiltonian ground state of the gapless phase is a semimetal. In
this context, note that the random application of bond projectors destroys the translational
symmetry which, along with time-reversal symmetry, prohibits a Fermi surface in the ground
state [2, 6]. The phase transition between the two phases of the monitored Kitaev spin
liquid is argued [2] to be described by a geometrical phase transition of an associated three-
dimensional classical loop model [7], and is in the universality class of the 3D Anderson
localization transition of symmetry class C.

The advent of ‘synthetic quantum matter’ in quantum simulators created from trapped
ions, Rydberg atom systems, and superconducting qubits, has opened a window onto many
potentially new and exotic quantum phases of matter. Conjuring steady state topological
phases from some convenient initial state via a protocol consisting exclusively of measure-
ments suggests that monitored dynamics may be a tool for generating exotic quantum phases
which might potentially have applications for quantum information storage.

I am grateful to Yi-Zhuang You and Sagar Vijay for discussions.
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