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In the context of the quantum Hall effect one identifies two anomalies: the quantum
anomalous Hall effect and the anomalous quantum Hall effect. The former is Haldane’s
quantum Hall effect without Landau levels: The quantization of the Hall conductance follows
from the coupling of a magnetic moment to the electron spin, without any orbital effect from
the Lorentz force. The latter is the half-integer quantum Hall effect observed in graphene
by Geim and Novoselov: Because of the spin and valley degeneracy one would expect the
first Hall plateau at 4e2/h, but instead it is at half that value.

The publication by Mogi et al. reports on a combination of these two anomalies. Their
objective is to measure a Hall conductance σxy equal to

1
2
e2/h in zero magnetic field, without

any degeneracy factor. The Hamiltonian that would produce this result is simple,

H = v(pxσx + pyσy) +Mσz, (1)

it’s the Hamiltonian of a two-dimensional Dirac fermion (momentum p, velocity v), with its
spin σ coupled to an out-of-plane magnetizationM . The energy spectrum E = ±

√
v2p2 +M2

has a gap 2M centered at E = 0. The Hall conductance

σxy =
1

2

e2

h
signM (2)

depends only the sign of the magnetization, as long as the Fermi level is inside the gap.1

1The dependence of the sign of the Hall conductance on wether the magnetization points upwards or
downwards in the plane is referred to as a “parity anomaly”.
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The physical realization is a thin film of a three-dimensional topological insulator (3D
TI, a (Bi,Sb)2Te3 alloy with a large bulk gap ≈ 200meV), doped by magnetic ions (Cr) on
the top surface only. (See Fig. 1.) Dirac fermions exist on the top and bottom surfaces,
gapless on the bottom and with a gap 2M ≈ 30meV on the top. The film is sufficiently
thick (d ≈ 10 nm) that the two surfaces are uncoupled.

Fig. 1. Semi-magnetic topological insulator.

Earlier experiments (discussed in a 2013
Journal Club contribution) on a 3D TI with
a homogenous magnetic doping, so that both
surfaces are gapped, had measured the quan-
tum anomalous Hall effect: a quantization
of the Hall conductance at e2/h in zero ex-
ternal magnetic field. A 3D TI with a sin-
gle gapped surface is referred to as a semi-
magnetic topological insulator. Last year a
realization was reported, but without exper-
imental data for the Hall conductance.

The two surfaces contribute in parallel
to the Hall conductance, by gapping out
one surface one would expect to obtain the
anomalous half-integer value. Mogi et al. in-
deed report this effect, but not in the way
familiar from the integer quantum Hall ef-
fect. There are no dissipationless chiral edge
states in a 3D TI, instead, a dissipative current is carried by the gapless bottom surface.

Fig. 2. Current density in the gapless bottom surface

of the 3D TI, calculated by replacing the effect of the

gapped upper surface by an infinite-mass boundary

condition at x = ±L/2. The current decays ∝ x−3/2

away from the edge. Figure from Zou et al.

The current distribution has been calcu-
lated by Zou et al., in a simple model where
the gapped upper surface is represented by
a boundary condition on the wave function
ψ in the gapless lower surface, of the form

σyψ(±L/2, y) = ±ψ(±L/2, y). (3)

This boundary condition corresponds to the
M → ∞ limit of the gap in the upper sur-
face. The infinite mass limit allows for an
analytical result for the current density pro-
file,

jy(x) = f(x+ L/2)− f(L/2− x),

f(x) =
eµ

2h
x−1J1(2µx/ℏv),

(4)

with J1 a Bessel function. The current density (plotted in Fig. 2) includes the contributions
from all states on the lower surface with energy smaller than the Fermi energy µ. The current
density is peaked at the edge, with an algebraic x−3/2 decay — rather than the exponential
decay one has in the integer quantum Hall effect. The total current I± carried by the edge
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at x = ±L/2 equals

I± = ±
∫ ∞

0

f(x) dx = ±eµ
2h
. (5)

A voltage difference ∆µ = eV between opposite edges (in the x-direction) then gives the
current (e2/2h)V in the y-direction, and hence the half-integer Hall conductance σxy = e2/2h.

Fig. 3. Longitudinal conductance σxx and Hall conductance σxy of the semi-magnetic topological insulator

of Fig. 1, obtained by inverting the resistance tensor measured in a Hall bar geometry. The left panel is in

zero magnetic field, the right panel in a high magnetic field perpendicular to the thin film. The experimental

data is superimposed on the temperature flow diagram of the integer quantum Hall effect, displaced by one

half e2/h in the left panel. Red and blue circles indicate stable and unstable fixed points of the flow. The

data points of a given color flow in the direction of the arrows when the temperature is decreased from 0.7 K

down to 0.04 K. Different colors distinguish different gate voltages, used to vary the Fermi energy on the

lower surface. (The upper surface remains gapped in the entire gate voltage range.) Figure from Mogi et al.

The experimental results of Mogi et al. are summarized in Fig. 3 (left panel). Because
the lower surface is not gapped, the edge currents are not protected against backscattering,
and indeed the longitudinal conductance σxx does not vanish. What is remarkable is that
the Hall conductance deviates only little from the ideal value e2/2h which would appear in
the absence of backscattering.

The same figure also shows the conductance which is measured when a large perpendicular
magnetic field is applied perpendicular to the thin film. That data (right panel) shows
the expected flow with decreasing temperature to σxx = 0, σxy = e2/h. Notice that the
quantization of σxy is only reached when σxx ≈ 0 in that case. One might have expected
the flow diagram in the half-integer quantized case to be simply the one from the integer
quantization displaced by half a conductance quantum. The experiment shows a qualitatively
different flow. I do not have a convincing explanation.
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