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The Navier-Stokes equations, which describe Newtonian fluids, play a central role in fields
like climate modeling, aerospace engineering, and astrophysics. Computational solutions to
Navier-Stokes are crucial for theoretical investigations and practical applications.

Recently, a team of condensed matter quantum physicists and applied mathematicians
simulated the incompressible Navier-Stokes equations in a surprising way, using techniques
originally developed for quantum wavefunctions [1]. Not only does this idea work, but
leads to highly accurate solutions that achieve high parameter compression ratios. It is
also superior to certain previous approximations used in the field. As a bonus, the method
can be straightforwardly ported to a quantum computer. The quantum-inspired approach
they used takes advantage of developments from condensed-matter physics for representing
wavefunctions with limited quantum entanglement, repurposed to describe the velocity field
of a classical fluid. This approach was pioneered in the applied mathematics community
where it is known as “quantics tensor train” (QTT) [2, 3, 4].

To understand how a classical function can be mapped to a quantum state, consider a
one-dimensional function f(x) with 0 ≤ x < 1. The variable x can be expressed to high
precision as a binary fraction

x = 0.b1b2 · · · bn = b1/2 + b2/2
2 + . . .+ bn/2

n . (1)

described by bits bi = 0, 1. (For example, 1/3 ≈ 0.010101.) This way of writing numbers
is similar to the to the binary representation of integers, but with the numbers stepping
through a finely-spaced grid of spacing 1/2n instead of steps of size 1. Next we can write the
values the function f(x) takes on this grid as f(x) = f(0.b1b2 · · · bn) = F b1b2···bn so that the
values of f(x) have been repackaged into an n-index tensor F . The last move is to think of
F as labeling the amplitudes of a many-body wavefunction of n qubits:

|f〉 =
∑

b1,b2,...,bn

F b1b2···bn|b1b2 · · · bn〉 . (2)
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such that all values of d99 in Fig. 1c are contained within the blue-
shaded area M corresponding to d(n) = min

(
Γ 3D(n), 207

)
 in 

equation (2). Because χ99 is much smaller than the upper vertex of 

the area D at Γ3D(4) = 212, the interscale correlations of DNS solu-
tions are far from being saturated (more details on the Schmidt 
coefficients are provided in Supplementary Section 1).

Next we investigate how the maximal Schmidt number χ99 scales 
with the Reynolds number Re (Fig. 1d). We find that χ99 saturates 
in the 2D case for Re ≳ 200. This suggests that interscale correla-
tions of 2D flows are bounded, in analogy to quantum correla-
tions in gapped 1D quantum systems with local interactions18. In 
the 3D case, χ99 increases according to a power law. The NVPS for 
d(n) = min

(
Γ 3D(n), χ

99

)
 scales as ∼ χ

2

99

logM (Supplementary 
Section 2). Kolmogorov’s theory3 states that the number of grid 
points M = 8N must scale with the Reynolds number according to 
M ~ (!/η)3 ~ Re9/4 to resolve all spatial scales. This implies that the 
NVPS of M only scales as ∼ Re

1.42

log Re, which is a substantially 
slower increase with Re compared to the NVPS of DNS, ~M ~ Re9/4.

Tensor network algorithm. The previous results demonstrate that 
it is beneficial to find a representation of flow fields where limiting 
the amount of interscale correlations directly translates into a reduc-
tion of the NVPS. This can be achieved by expressing each veloc-
ity component in a compressed tensor network format known as a 
matrix product state (MPS) or tensor train decomposition13,14,25,26. 
Our MPS encoding of function values is chosen such that it is con-
sistent with the decomposition in equation (2) (Supplementary 
Section 2). It comprises products of N matrices Aω

n with dimension 
d(n − 1) × d(n), where 2N is the number of grid points in each spa-
tial direction, n = 1, …, N and d(0) = d(N) = 1 (refs. 27,28). The matrix 
A

ω

n is associated with a length scale Lbox/2n, and its dimension d(n) 
controls the maximum amount of correlations allowed between 
neighboring scales. The nearest-neighbor correlations are mediated 
directly by each matrix product, while correlations between further 
distant length scales can only be captured indirectly by traversing 
several matrix products. These properties make MPS well suited 
for the description of scale-local turbulent flows where correlations 
between vastly different length scales are expected to be small.

Here we consider MPSs of bond dimension χ where we set 
d(n) = min

(
Γ 2D(n), χ

)
 in 2D and d(n) = min

(
Γ 3D(n), χ

)
 in 3D. 

The bond dimension χ controls the level of compression in the MPS 
format. For example, the interscale correlations captured by an MPS 
with bond dimension χ = 25 (χ = 207) are represented by the blue-
shaded area in Fig. 1b (Fig. 1c). If χ is kept constant as N increases, 
the number of MPS parameters scales logarithmically with the total 
number of grid points, resulting in an exponential reduction of the 
NVPS compared to DNS. However, we emphasize that this reduc-
tion does not truncate the range of length scales covered by the MPS 
ansatz—it only limits the amount of interscale correlations.

To fully utilize this dimensionality reduction for numerical sim-
ulations on large grids, we devise an algorithm for solving the INSE 
without leaving the compressed MPS manifold M (Matrix prod-
uct state algorithm section in the Methods). We use a second-order 
Runge–Kutta time-stepping scheme and discretize spatial deriva-
tives in the same way as the DNS solver, which utilizes an eighth-
order finite-difference stencil.

Validation of the tensor network algorithm. We now investigate 
how well the dynamics of turbulent flow are captured inside the 
MPS manifold M by comparing our algorithm against DNS for 
different compressions χ. Reducing the bond dimension χ reduces 
the NVPS. The analog of reducing the bond dimension in tradi-
tional DNS is to perform under-resolved DNS (URDNS), where the 
simulation is carried out on a coarse grid not covering all relevant 
length scales. URDNS can be considered as the most basic form of 
large eddy simulations29–31, where no explicit models are employed 
to account for the disregarded subgrid scales (Direct numerical sim-
ulation algorithm section in the Methods). For a fair comparison 
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Fig. 3 | 3D Taylor–Green vortex. Dynamical simulation of the INSE in 
3D for the Taylor–Green vortex and Re!=!800, as defined in the Set-up 
of numerical experiments section in the Methods. a, Vortical structures 
rendered using the standard λ2 method51 are shown at times t/T0!=!0.2, 0.8, 
1.4 and 2 (left to right). The top row is for DNS on a 28!×!28!×!28 grid. Rows 
2–4 are for MPS simulations with different χ, and the bottom three rows 
are for URDNS on cubic grids as indicated. b, The enstrophy ζ(t) (asterisks, 
crosses and circles) and the energy dissipation ϵ(t) (lines) as a function of 
time, with E0 being the total energy at t!=!0.
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Fig. 3 | 3D Taylor–Green vortex. Dynamical simulation of the INSE in 
3D for the Taylor–Green vortex and Re!=!800, as defined in the Set-up 
of numerical experiments section in the Methods. a, Vortical structures 
rendered using the standard λ2 method51 are shown at times t/T0!=!0.2, 0.8, 
1.4 and 2 (left to right). The top row is for DNS on a 28!×!28!×!28 grid. Rows 
2–4 are for MPS simulations with different χ, and the bottom three rows 
are for URDNS on cubic grids as indicated. b, The enstrophy ζ(t) (asterisks, 
crosses and circles) and the energy dissipation ϵ(t) (lines) as a function of 
time, with E0 being the total energy at t!=!0.
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Figure 1: Solutions to the 3D Navier-Stokes equations for the Taylor-Green vortex config-
uration. Shown from left to right are results for times t/T0 = 0.2, 0.8, 1.4, 2.0 where T0 is a
characteristic time scale. The upper row shows results obtained via precise direct numerical
simulation (DNS) while the lower row shows results obtained using quantum-inspired tech-
niques based on matrix product states (MPS) of maximum bond dimension or rank χ = 192.
(Taken from the highlighted paper; Copyright Springer Nature Ltd. (2022).)

States of this type turn out to have low entanglement for a wide class of functions f(x)
[2]. For example, both the functions f(x) = eikx and f(x) = δ(x − k) give states |f〉 with
precisely zero entanglement, while many other smooth functions have entanglement rather
less than a typical ground state of a many-body Hamiltonian. Some functions require more
entanglement though, such as momentum-space Green’s functions for systems with large
Fermi surfaces [5] and 3D Navier-Stokes flows with high Reynolds numbers [1]—see more
below.

States with low entanglement can be represented compactly using tensor networks such
as matrix product states (MPS), originally developed for solving quantum condensed-matter
physics problems, as well as tasks like simulating quantum computers. An MPS representa-
tion of an n-qubit quantum state approximately factorizes the state into n tensors, contracted
together with “virtual” or bond indices that run over χ values. The size of χ determines
how entangled a state the MPS can represent and how costly they are to store and perform
computations with. Differential operators such as ∂2/∂x2 can also be easily represented
(as “MPO” tensor networks). Powerful algorithms for time evolving (such as “TDVP”) or
solving eigenvalue problems (such as “DMRG”) turn out to be essentially the same in the
continuum setting. The generalization to multiple variables is straightforward, and is just
an MPS with two physical indices on each tensor for a 2D function f(x, y) or three physical
indices for a 3D function f(x, y, z) and so on.

Let us pause to note how remarkable this is: for decades, tensor networks have been used
primarily for representing quantum many-body states which are high-dimensional functions
of discrete variables Ψ(s1, s2, s3, . . . , sn) where the sj = 1, 2, ..., d could be spins or particle
occupations. It turns out they are just as good, if not better, at representing low-dimensional,
continuous functions f(x) too. For continuous functions, the meaning of entanglement turns
out to be rather different, and captures correlations between scales rather than correlations
between the left and right halves of a quantum system.
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The authors of the highlighted paper emphasize the connection between low entanglement
and approximate scale-separability throughout their work. In the theory of fluids, the ratio
of the largest to smallest scales is related to the Reynolds number Re describing the flow.
Because the efficiency of the MPS ansatz for the velocity field relies on scale separability,
the authors find that the MPS bond dimension χ needed to get accurate results grows with
the Reynolds number. For two-dimensional fluids it grows for small Re then plateaus, while
for three-dimensional fluids the bond dimension grows as a power law in Re.

Looking into the future, what other ideas from the quantum physics toolbox can be
applied to classical differential equation solving? One can certainly envision the connection
between Reynolds number and entanglement being made more rigorous and being generalized
to other differential equations. In fact, a vision of quantum-inspired classical methods based
on tensor networks is beginning to emerge for a wide variety of mathematical problems
[6], including other differential equations such as the Fokker-Planck [7] and Vlasov-Poisson
[8] equations, and is already coming full circle back into quantum many-body physics for
applications such as such as solving the Dyson equation [5].
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