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The Navier-Stokes equations, which describe Newtonian fluids, play a central role in fields
like climate modeling, aerospace engineering, and astrophysics. Computational solutions to
Navier-Stokes are crucial for theoretical investigations and practical applications.

Recently, a team of condensed matter quantum physicists and applied mathematicians
simulated the incompressible Navier-Stokes equations in a surprising way, using techniques
originally developed for quantum wavefunctions [1]. Not only does this idea work, but
leads to highly accurate solutions that achieve high parameter compression ratios. It is
also superior to certain previous approximations used in the field. As a bonus, the method
can be straightforwardly ported to a quantum computer. The quantum-inspired approach
they used takes advantage of developments from condensed-matter physics for representing
wavefunctions with limited quantum entanglement, repurposed to describe the velocity field
of a classical fluid. This approach was pioneered in the applied mathematics community
where it is known as “quantics tensor train” (QTT) [2, 3, 4].

To understand how a classical function can be mapped to a quantum state, consider a
one-dimensional function f(z) with 0 < 2 < 1. The variable x can be expressed to high
precision as a binary fraction

described by bits b; = 0,1. (For example, 1/3 ~ 0.010101.) This way of writing numbers
is similar to the to the binary representation of integers, but with the numbers stepping
through a finely-spaced grid of spacing 1/2" instead of steps of size 1. Next we can write the
values the function f(x) takes on this grid as f(z) = f(0.biby---b,) = F"%% 50 that the
values of f(z) have been repackaged into an n-index tensor F'. The last move is to think of
F' as labeling the amplitudes of a many-body wavefunction of n qubits:
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Figure 1: Solutions to the 3D Navier-Stokes equations for the Taylor-Green vortex config-
uration. Shown from left to right are results for times t/75 = 0.2,0.8,1.4,2.0 where T} is a
characteristic time scale. The upper row shows results obtained via precise direct numerical
simulation (DNS) while the lower row shows results obtained using quantum-inspired tech-
niques based on matrix product states (MPS) of maximum bond dimension or rank y = 192.
(Taken from the highlighted paper; Copyright Springer Nature Ltd. (2022).)

States of this type turn out to have low entanglement for a wide class of functions f(x)
[2]. For example, both the functions f(z) = €** and f(x) = §(x — k) give states |f) with
precisely zero entanglement, while many other smooth functions have entanglement rather
less than a typical ground state of a many-body Hamiltonian. Some functions require more
entanglement though, such as momentum-space Green’s functions for systems with large
Fermi surfaces [5] and 3D Navier-Stokes flows with high Reynolds numbers [1]—see more
below.

States with low entanglement can be represented compactly using tensor networks such
as matrix product states (MPS), originally developed for solving quantum condensed-matter
physics problems, as well as tasks like simulating quantum computers. An MPS representa-
tion of an n-qubit quantum state approximately factorizes the state into n tensors, contracted
together with “virtual” or bond indices that run over y values. The size of x determines
how entangled a state the MPS can represent and how costly they are to store and perform
computations with. Differential operators such as 9?/9z% can also be easily represented
(as “MPO” tensor networks). Powerful algorithms for time evolving (such as “TDVP”) or
solving eigenvalue problems (such as “DMRG”) turn out to be essentially the same in the
continuum setting. The generalization to multiple variables is straightforward, and is just
an MPS with two physical indices on each tensor for a 2D function f(x,y) or three physical
indices for a 3D function f(x,y,z) and so on.

Let us pause to note how remarkable this is: for decades, tensor networks have been used
primarily for representing quantum many-body states which are high-dimensional functions
of discrete variables W(sy, sg, 83, ..., S,) where the s; = 1,2, ...,d could be spins or particle
occupations. It turns out they are just as good, if not better, at representing low-dimensional,
continuous functions f(x) too. For continuous functions, the meaning of entanglement turns
out to be rather different, and captures correlations between scales rather than correlations
between the left and right halves of a quantum system.



The authors of the highlighted paper emphasize the connection between low entanglement
and approximate scale-separability throughout their work. In the theory of fluids, the ratio
of the largest to smallest scales is related to the Reynolds number Re describing the flow.
Because the efficiency of the MPS ansatz for the velocity field relies on scale separability,
the authors find that the MPS bond dimension y needed to get accurate results grows with
the Reynolds number. For two-dimensional fluids it grows for small Re then plateaus, while
for three-dimensional fluids the bond dimension grows as a power law in Re.

Looking into the future, what other ideas from the quantum physics toolbox can be
applied to classical differential equation solving? One can certainly envision the connection
between Reynolds number and entanglement being made more rigorous and being generalized
to other differential equations. In fact, a vision of quantum-inspired classical methods based
on tensor networks is beginning to emerge for a wide variety of mathematical problems
6], including other differential equations such as the Fokker-Planck [7] and Vlasov-Poisson
[8] equations, and is already coming full circle back into quantum many-body physics for
applications such as such as solving the Dyson equation [5].
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