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Chaos and ergodicity are two closely related cornerstones of physics. In classical systems
chaos is usually defined through the instability of the system’s trajectories to either small
changes in initial conditions or small changes of the Hamiltonian.Generally chaos is believed
to destroy all conservation laws except energy and perhaps a few more like the particle
number. Then a standard textbook argument [1] tells us that the time averaged probability
distribution of a chaotic isolated system depends only on these few conserved quantities,
leading to statistical equilibrium. In Fig. 1 we illustrate how this reasoning works for a single-
particle of a unit mass in a two-dimensional nonlinear potential V (x, y) = (x2+y2)/2+2x2y2.
Two trajectories with slightly different initial conditions exponentially separate from each
other at short times (left panel) indicating chaos and fill the allowed phase space indicating
ergodicity.

While generic systems of interacting particles are believed to be ergodic in the thermody-
namic limit, this is not always the case in few-particle systems. A powerful theorem due to
Kolmogorov, Arnold and Moser (KAM) [2] tells us that there can be a finite chaos threshold
required to break all the conservation laws. In particular, if the unperturbed integrable sys-
tem has a conserved quantity q0 then after adding a small integrability breaking perturbation
ε there can be a deformed conserved charge

Q = q0 + εq1 + ε2q2 + . . . (1)

As long as the expansion (1) converges there is an extra conservation law constraining dyan-
mics and thus preventing the system from thermalization. These deformed integrals of
motion Q are often called LIOMs (local integrals of motion). The expansion (1) also implies
that the transition from integrable to chaotic behavior is necessarily non-perturbative.

In quantum systems there is still no consensus on how one should define chaos and
ergodicity. Now both concepts are most commonly understood through the eigenstate ther-
malization hypothesis (ETH) (see Re. [3] for the review), which is based on the random
matrix theory. Like in classical systems emergence of LIOMs in the form of Eq. (1), where
qj stand for local Hermitian operators, is a sufficient condition for violating ergodicity.
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Figure 1: Two trajectories of a particle with slightly different initial conditions in a nonlinear
potential. Left and right panels correspond to short and long times, respectively.
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Figure 2: A schematic illustration of
MBL as a localization in the Fock
space.

Alleged existence of such dressed LIOMs, perturba-
tively connected to non-interacting localized Ander-
son orbitals, is the foundation for existence of the
many-body localized (MBL) phase [4, 5]. Because
the many-particle Hilbert space is exponentially large
in the system size, this LIOM stability was initially
coined Fock space localization. Each site in this Fock
space represents a particular configuration of charges
on the lattice sites. In Fig. 2 we schematically illus-
trate this idea, where the left panel corresponds to
ergodic, delocalized phase and the right panel would
correspond to the localized MBL phase.

Most numerical studies focused on one-dimensional
systems of spinless fermions, which can be mapped
via the Jordan-Wigner transformation [6] to spin 1/2
chains with a disordered magnetic field. The most
extensively studied model, is the disordered XXZ chain, described by the Hamiltonian:

HXXZ =
∑

j

(Sx
j S

x
j+1 + Sy

j S
y
j+1 + ∆Sz

jS
z
j+1) +

∑
j

hjS
z
j , , (2)

Here the first two terms represent the hopping of fermions, which is equivalent to the trans-
port of the z-magnetization in the spin language. The term ∑

j ∆Sz
jS

z
j+1 encodes interactions

between the fermions or spins and finally the last term represents the disordered poten-
tial/magnetic field. Here we set the hopping strength to unity. ∆ is typically chosen to be of
the order of unity (∆ = 1 corresponds to the Heisenberg chain) and hj are typically chosen
to be independently and uniformly distributed on each site in the interval [−W,W ]. Many
early numerical studies concluded that there is a transition in this model to the localized
phase happening around disorder Wc ≈ 3.5 − 3.7 (see Ref. [7] for review). However, those
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early numerical results were challenged by a growing number of papers using improved nu-
merical methods [8, 9, 10, 11] pushing this bound to much higher valueWc & 20. Combining
this observation with very strong (exponential) dependence of the relaxation time on disor-
der in the ergodic phase it becomes obvious that in order to distinguish localization from
slow relaxation one should wait for astronomically long times, which are not accessible in
experiments. In Ref. [12] and the follow up work [13] J. Šuntajs et. al. suggested for the first
time that numerical results are consistent with an extensive scaling of the critical disorder
strength with the system size, i.e. with absence of localization in the thermodynamic limit.

Early analytical papers on MBL [4, 5] argued about the stability of LIOMs by doing
perturbation theory around the non-interacting localized problem. Later in Refs. [14, 15]
it was proposed that the MBL phase in spin systems is defined through existence of a con-
vergent expansions like (1), where the role of q0 is played by the local z-magnetizations Sz

j ,
j = 1, 2, . . . L, i.e. there is a quasi-local unitary transformation that deforms the local mag-
netization into a LIOM. It was argued that MBL is very similar to single-particle localzation
on a Cayley tree or even better random regular graphs (RRGs) [16, 17], which are locally tree
like. However, in order to make the analogy with trees work one needs to introduce extra
assumptions that the connectivity of these graphs does not scale with volume of the system
as one would naively expect. In addition, mapping MBL to the Fock space localization on
a finite degree Cayley tree would imply system size independent participation entropy of
localized eigenstates in Fock space, see Fig. 2. This, however, would contradict the fact that
any small local basis transformation, which need not delocalize the system in physical space,
will generate extensive entropy in Fock space. One should thus at best hope for MBL to
be transition from fully ergodic to a system with finite fractal dimension, which cannot be
described by Anderson localization in Fock space.

The arguments based on convergence of the perturbative expansion, and the mapping of
interacting disordered models to RRGs, are also largely insensitive to dimensionality of the
system. A different line of arguments, which again explicitly uses the many-body and local
nature of the problem, suggested that this picture cannot be correct and localization can only
be stable in one dimension. The key insight, known as avalanche instability, was proposed
in Ref. [18]. It was argued that a single ergodic island in a system, coming from a rare low
disorder configuration, will melt the whole localized phase in dimensions higher than one.
In one dimension this argument implies that the MBL can only be stable if the correlation
length is less than the lattice spacing, which is again in direct contradiction with both the
pioneering MBL papers and the Cayley tree arguments. The avalanche argument seems to
be very powerful as it shows self consistency of a localized phase: if the correlation length
of LIOMs is short enough then they are stable against thermal inclusions. Conversely, if the
localized phase does exist, it must be stable against such inclusions and hence the localization
length must be sufficiently short. However, self consistency is a necessary condition for
validity of a certain logical statement, but it is never sufficient. The key question missing
in this line of thought is whether the localization length exists at all, i.e. whether LIOMs
do have exponential tails. In fact, existence of these tails was a key unjustified assumption,
which was the weak point of the whole MBL construction.

To understand the microscopic structure of the LIOMs and the mechanism of the flow
of the correlation length with the distance one can consider a simplified setup where a spin
with a very strong magnetic field is weakly coupled to either a clean or disordered bath
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(see Fig. 3). This setup corresponds to the Hamiltonian H + V Sz
0 + εHint. Then Ref. [19]

showed that one can develop an expansion for the LIOM like in Eq. (1) with q0 = Sz
0 .

J2/V J2/V
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Figure 3: LIOM construction setup.

If we stop in the n-th order, in 1/V and the first order
in ε the decay rate of this LIOM is given by:

Γ2
n ≈ ε2‖Ad2n+1

H Hint‖2

V 4n+2 . (3)

Convergence of the LIOM in the leading order in ε
is thus tied to the scaling of the norm of the nested
commutator ofHint withH. Such scaling was recently
studied in the literature following Ref. [20]. For non-
interacting models it is exponential: ‖Adn

HHint‖ ∼ κn

and the LIOM construction converges for V > κ. A
similar situation applies to RRGs. However, in local interacting models these norms have
factorial scaling: ‖Adn

HHint‖2 ∼ n!κn with additional logarithmic corrections in one dimen-
sion [21]. In this way the LIOM construction is asymptotic and there is an optimal order
n∗ ∼ V/κ beyond which the decay rate of the LIOM stops decreasing with n. It is interesting
that this conclusion does not depend on whether the Hamiltonian H is disordered or not.
Indeed in the bottom plot of Fig. 3 it is illustrated how other strongly disordered sites in the
system can be replaced by weak links connecting the spins on the left and right of these sites
via a virtual process. Such weak links can only lead to a finite renormalization of the optimal
order n∗, but cannot fight the factorial growth of the nested commutators. The origin of
the LIOM instability is thus the rapidly growing number of the virtual transitions with each
order of perturbation theory rather than divergence of individual perturbative contributions
with smallest denominators. Interestingly one arrives to the same conclusion by going to the
rotating frame with respect to V Sz

0 and applying Fermi’s Golden Rule (FGR) to the rapidly
oscillating coupling Hint. When the FGR rate becomes comparable to the level spacing
the LIOM cannot decay leading to the relation between the system size and the potential
strength describing the crossover between the localized and delocalized regimes: L∗ ∼ V/κ
exactly as first predicted in Ref. [12].

Real LIOM
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Figure 4: A schematic representation of a pre-
sumed idealized LIOM with exponential tails
and the real unstable LIOM.

Since the order n of the expansion is tied
to the spatial extent of the LIOM, one can
interpret the scaling of Γn as the growth of
the LIOM localization length with distance:
ξ−1(x) ∼ (log V − log x). The fact that
it decays slower and slower with n means
that the LIOM spreads more and more as
its support increases. This conclusion agrees
with the scaling of the slowest operators with
the system size [9, 10]. This situation is
schematically illustrated in Fig. 4, where the
real LIOM (red line) becomes unstable after
reaching a finite size and then decays to the
continuum. In this sense the LIOM is simi-
lar to a dressed quasi-particle, with a long but finite life time.
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