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Symmetry enhancement is one of the most commonly encountered, but also one of the most
remarkable examples of emergence. Many systems tuned to critical points, both quantum
and classical, effectively display much more symmetry in the limit of low energies and large
length scales, as compared to the microscopic models from which they descend. For instance
the critical point in the 3D Ising model, an iconic model of classical statistical mechanics,
describes the ordering transition of a 3D ferromagnet (with spin anisotropy) on cooling below
the Curie temperature T = TC . Besides Ising symmetry, the model only has some discrete
translation and rotation symmetry due to the lattice. However at the critical point, the
physics at long length scales is believed to acquire not just the full translation and rotation
symmetry of uniform space, but is also invariant under other spatial transformations that
preserve shapes (the conformal transformations). These conformal transformations include
global scale transformations or dilations, ~r → (1 + ε)~r but interestingly also include an
additional set of special conformal transformations∗.

The well known scaling laws and exponents at critical points reflect only a small part of
the symmetry enlargement. The featured reference uses numerical calculations on relatively
small sized systems to convincingly establish the full conformal symmetry of the 3D Ising
critical point, and obtain a great deal of information about it beyond critical exponents.
The actual model that is studied is a 2+1D quantum model, related to the classical 3D Ising
model by the standard quantum - classical mapping. What is non-standard though is the
definition of the model on a sphere that unlocks a one to one correspondence between energy
eigenstates and the ‘scaling operators’ that transform in a simple way under conformal
mappings. The energy eigenvalues then map to the scaling dimensions of the operators.
Previous attempts to define the Ising model on the sphere had to grapple with introducing
a short distance cutoff - usually done in the form of a lattice - which then requires the

∗Which take the form ri → ri + 2(~ε · ~r)ri − εir
2. Note that if we were in 2D the set of conformal

transformations would be even larger, owing to the fact that holomorphic functions f(z) generate conformal
maps. Here we are interested in 3D classical models, or equivalently 2+1D quantum models with effective
Lorentz symmetry.

1

DOI:10.36471/JCCM January 2023 02

https://www.condmatjclub.org
https://doi.org/10.36471/JCCM_January_2023_02


introduction of lattice defects to accommodate the curved surface of the sphere. In the
featured reference, this problem is sidestepped by using a different regularization scheme -
that of charged particles on a sphere in a magnetic field. Such a ‘fuzzy sphere’ setup which
is described in more detail below, provides a different and more symmetric way to define
a finite model. Most surprisingly, this new regularization appears to give accurate results
for scaling dimensions even at very small system sizes (essentially involving just 16 spins!).
The accuracy of the results can be verified by comparing it to an entirely different numerical
approach, the ‘conformal bootstrap’ (CB) [1], which proceeds by imposing a large number
of consistency constraints that follow from conformal invariance, to severely narrow down
allowed values of scaling dimensions. Comparing results from the featured reference to CB,
excellent agreement is found for the scaling dimension of about 70 (!) scaling operators with
angular momentum l ≤ 4, whose scaling dimensions are found to be within a few percent of
the CB values. Additionally, the scaling dimensions of two primary operators that were not
accessible to CB were also obtained. Before describing the results of the featured reference
in more detail, let us recall some relevant background.

Background: Scale invariance at critical points is typically discussed in terms of critical
exponents. For instance, the associated divergence of the intrinsic length scale ξ as TC is
approached defines ν via ξ ∼ |T −TC |−ν , and similarly the spontaneous magnetization in the
ordered phase for T ≤ TC is controlled by β via m ∝ (TC − T )β . From the renormalization
group point of view, this corresponds to two relevant operators, ε and σ which correspond
to tuning to the critical temperature and to zero field, whose scaling dimensions, i.e. their
behavior under dilations, are related by: ∆ε = 3 − ν−1 and ∆σ = βν−1. Using different
schemes including Monte Carlo numerics, field theory and experiment, these have been
accurately obtained. However these are just the tip of the iceberg, being the few scaling
operators with the lowest dimensions. In general, a conformally invariant theory in 3D
contains an infinite set of primary operators φi with dimension ∆i and spin li along with
coefficients Cijk. All other scaling operators can be derived from one of the φi.

How does one concretely relate a scaling field to microscopic degrees of freedom? One
route uses the powerful state-operator correspondence that is rooted in conformal invariance,
which allows local operators to be related to states. At first sight this may seem like a
‘type’ mismatch, as well as a mismatch in dimension, local operators being points in D
dimensions, while quantum states live on a D−1 dimensional equal-time slice. However, the
transformation in the Figure 1A illustrates how this can be achieved, which maps the radial
coordinate on the left ‘r’ to a time coordinate ‘t’ on the right via: t = log r . Thus the effect
of dilation r → (1+ε)r on the left, is simply time evolution on the right t→ t+ε produced by
the Hamiltonian. The eigenvalues of the time evolution, i.e. the energies, are then nothing
but scaling dimensions, and eigenstates are related to scaling operators. Note that the time
slice on the right corresponds to a sphere i.e. SD−1. In D = 2, where this is just a circle, the
relation between eigenstates and scaling operators has been heavily exploited in the past.
However, here in D = 3, we need to define our system on the two dimensional surface of a
sphere S2. In contrast, the simplest periodic boundary conditions geometry leads to a torus
for which this state operator correspondence does not directly hold. Hence, one is confronted
with the question of placing a CFT on a sphere while maintaining a finite Hilbert space, to
enable a direct numerical calculation.

The Fuzzy Sphere: The creative solution to this problem in the featured reference
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Figure 1: (A) State operator correspondence relating dilations in D-dimensional statistical
mechanics model to time evolution of a quantum state on the sphere SD−1. (B) The fuzzy
sphere setup, electrons on a sphere in a magnetic field restricted to the lowest Landau level
gives a finite dimensional Hilbert space. (C) A magnetic phase transition on the fuzzy sphere
in the Ising universality class is tuned by a field h and the energy spectrum at the transition
point is examined. (D) An example of part of the energy spectrum. The energies correspond
to scaling dimensions, and the lowest energy state is the primary operator σ with ∆σ = 0.524,
close to the best existing estimates.
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exploits the fact that charged particles in a magnetic field give rise to degenerate Landau
levels. The degeneracy of the lowest Landau level grows with area, and hence for a finite
surface like a sphere, one automatically has a finite Hilbert space. However, unlike a lattice
based regularization, one retains the rotation symmetries of the sphere, which allows for a
labeling of states by angular momenta and also seems to mitigate finite size effects. The
precise model involved taking N = 16 interacting electrons on a sphere with the same number
of available states. If the electrons are spin polarized, a unique fully filled shell is obtained.
However, if the electrons have to spontaneously pick a spin direction, this corresponds to a
ferromagnet. By appropriately designing interactions between electrons the phase diagram
shown in Figure 1C was obtained. A spin anisotropy term favors an Ising alignment of
electron spin along the Sz direction, while a Zeeman field in the Sx direction triggers a phase
transition in the 2+1D Ising universality class. The system is tuned to sit on the phase
boundary, and its energy spectrum is calculated using exact diagonalization.

Results: The energy spectrum on the fuzzy sphere for N = 16 was obtained in the
featured reference, along with the corresponding angular momentum l of several excited
states. Relating energy to the scaling dimension requires calibration with an operator with
known scaling dimension (here, the stress-energy tensor which has l = 2 and ∆T = 3). The
scaling dimensions of other operators can then be read off, one family is shown as an example
in Figure 1D. Accurate scaling dimensions for 11 other primary operators were obtained
which agree within 1.6% of CB values . Notably, in contrast to many other simulations of
critical phenomena these calculations are performed at a fixed size.

In the future, a better understanding of finite size effects in this setup is clearly worth
pursuing. For instance, for reasons that remain fuzzy, finite size effects vary along the phase
transition line. The fuzzy sphere geometry also allows for the exploration of the 3D analog
of the 2D central charge, denoted as ‘f ’ and the analogous f -theorem which constrains 3D
criticality [2]. Finally this technique should be deployed on more exotic critical points - for
instance the deconfined phase transitions - models for which were already discussed in the
quantum Hall context [3].

In closing it is worth noting that the first experiments on the critical point in liquid-gas
transitions (which shares the 3D Ising universality class) by Charles Cagniard de la Tour ,
took place 200 years ago ! It is incredible that its physics continues to surprise us.

I thank Ruihua Fan and Shai Chester for useful discussions and comments.
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