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1 Introduction. Scanning tunneling microscopy (STM)

experiments on magic angle twisted bilayer graphene.

Evidence for a rich and very intriguing and interesting phase diagram in magic angle twisted
bilayer was first obtained from electronic transport experiments[1, 2]. On the other hand,
a variety of local probes, scanning tunneling microscopy (STM), atomic force microscopy
(AFM), ... are a basic tool in experimental condensed matter physics. The early transport
experiments were carried out on graphene bilayers encapsulated on both sides by hexagonal
boron nitride stacks. This set up provides a very clean and defect free environment, although
it is not suitable for STM experiments. Nevertheless, a number of observations[3, 4, 5, 6]
offered a wealth of information on the geometry and the electronic density of states of magic
angle graphene. STM has also allowed to study in detail the way strains interfere with
the twist angle and modify locally the moiré unit cell[7]. Local probes other than STM
have provided important information on the spatial distribution of twist angles[8], or on
inhomogeneities of topological features of the band structure[9]. The STM has also been
applied to the study of possible correlated phases in twisted bilayer graphene[10, 11, 12].
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2 STM as a tool to observe the superconducting order

parameter.

The work which is the subject of this commentary[13, 14] deals with STM studies of the
superconducting phase of the moiré system. Low temperature STM measurements in non
encapsulated samples give convincing evidence of the existence of a superconducting gap in
the range of electron densities where transport experiments show superconductivity. Junc-
tions between normal metals and superconductors, or between different superconductors
can provide valuable information on the superconducting state of the electrodes. Moreover,
STM experiments allow for two complementary regimes: i) when the STM tip is far from
the sample being studied, the so called tunneling regime, the dI/dV spectra of the junc-
tion is proportional to the local density of states of the substrate, ii) if the tip is near the
sample, transport across the junction is due to a few, or even one, well connected channels,
and Andreev reflection, that is, the transformation of an incoming electron into an outgoing
hole, becomes possible at voltages below the superconducting gap. Hence, both regimes offer
information on the nature of the superconducting phase of the substrate.

Ref.[13] shows spectroscopy data obtained both in the tunneling and in the contact
regimes. Both results include features which differ significantly from those expected in an s-
wave, constant gap superconductor. The tunneling data, which should describe the density
of states of the superconductor, does not show a well defined gap over a finite range of
energies, but rather a depressed density of states which seems to vanish at the Fermi energy.
This result suggests a nodal gap, which goes to zero only at a discrete set of points of the
Fermi surface. Experiments in the contact regime give a significant increase of the junction
conductance near the Fermi energy, suggesting the existence of Andreev scattering within the
superconducting gap. In addition, the ratio between the values of the gap and kBTc, where
Tc is the critical temperature, is much smaller in the contact regime than in the tunneling
regime, a finding which seems difficult to explain within the framework of a constant gap
and s-wave pairing.

Ref.[14] also presents dI/dV curves in the contact and tunneling regimes, although for
a superconducting trilayer sample. Results for the tunneling regime show two different
behaviors: i) near a filling of ν = −2 a U shaped gap is observed, while for −3 . ν . 2.2
the spectrum seems more consistent wth a V shaped gap. Ref.[14] also reports, in the
tunneling regime dip-hump features beyond the superconducting gap. In the contact regime,
ref.[14] reports a peak at the Fermi energy, which suggests Andreev scattering within the
superconducting gap. Unlike in[13], the ratio between the superconducting gap and the value
of kBTc observed in[14] is comparable to estimates based on transport measurements.

3 Discussion.

The results mentioned above shed light on the nature of the superconducting order param-
eter, altough they can be interpreted in different ways. The Fermi surface of twisted bilayer
graphene, as in monolayer graphene and in graphite, must have, at least, two pockets, one
per valley (unless the system is valley polarized). The existence of nodal superconductivity
would imply that not only that the order parameter changes sign at different regions of the
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Fermi surface, but that there is a change of sign within each valley. In addition, the different
gap shapes reported in[14] suggest that a transition between different superconducting phases
takes place as the band filling changes. The V shaped superconducting gap reported in[13]
and in[14] can be consistent with p− and d−wave order parameters around closed Fermi
surface pockets in each valley. Ref.[14] suggests that the phase with an U shaped gap could
be a strongly coupled superconductor, best described as a Bose-Einstein condensate. This
point has been related to the observed subgap Andreev scattering using models presented
in[15].

Subgap Andreev scattering is forbidden in a superconductor where the gap around the
Fermi surface averages out to zero, if the tip is assumed to inject electron waves described
by an equal amplitude superposition of all momenta. Such electron wave is transformed
within the superconductor into and odd superposition of hole plane waves, which interfere
destructively when they are reflected into the tip, see[16, 17]. In a superconductor where the
order parameter changes sign between valleys, however, the tip can act as a pair breaking
defect which induces intervalley scattering. This process leads to subgap Andreev states,
which mediate Andreev scattering[13, 17]. The existence of these subgap states could explain
the observed discrepancy between the ratio of the gap to the critical temperature and BCS
theory.

The humps in the spectra above the superconducting gap have previously been inter-
preted in several types of superconductors as signatures of the excitations which mediate
the pairing[18], or the effect of other superconducting phases[19], the ”Leggett mode”[20].
It is interesting to note that different (ARPES) experiments performed by a collaboration
which includes the team in[13] have reported ”replica” bands in twisted bilayer graphene[21].
The positions of these bands are consistent with the transverse optical mode of graphene
at the K point. The existence of these bands suggest a strong coupling between electrons
and these TO phonons, which could lead to pairing[22]. The possibility of pairing due to
optical phonons was discussed shortly after the discovery of twisted bilayer graphene[23].
The coupling between TO phonons and electrons leads to interesting instabilities[24, 25, 26],
and the phonon band itself gets significantly flattened in a twisted bilayer[27].
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