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Two years ago, we wrote [1] a Recommendation for a paper by Nakamura et al[2] reporting
on an interferometric measurement of the fractional statistics of the quasi-particles in the ν =
1/3 quantum Hall state. One of us (SAK) has contributed Recommendations[3] on earlier
interferometric experiments with related goals by Camino et al and Willett et al. However,
the physics involved is of considerable fundamental interest, and while the underlying theory
is simple and compelling, there have remained unresolved issues of interpretation and worries
about possible experimental artifacts [4]. Final certainty about the results will likely emerge
from a web of evidence stemming from numerous experiments that extend the range of
existing experiments, or check and confirm uncertain aspects of earlier ones.

Excitingly, there have been new developments on the problem of measuring fractional
statistics, including the current recommended paper which reports an extension of the pre-
vious interferometer experiments, now extended to the case of the ν = 2/5 quantum Hall
state. As we will discuss below, this is an important extension of the previous result, one
in which statistics, effective charge, and filling factor are not all the same. In addition,
there have been other notable developments in the area of quantum Hall interferometers, to
which we will also allude including a new form of interferommetry [5], an improved version
of a prevously studied interferometer [6] and the construction of a set of graphene-based
interferometers [7, 8, 9, 10] that promise to greatly expand the range of these experiments.

Early in the history of the fractional quantum Hall effect, a remarkable theoretical result
was obtained by Arovas, Schrieffer, and Wilczek (ASW) [12] on the basis of an analysis of
the Laughlin wave function [11]; if a quasi-hole is transported adiabatically along a closed
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path, the Berry phase evolved can be expressed in terms of the expectation value of the total
charge, Q̂, enclosed by the path as

θ = −2π⟨Q̂⟩ . (1)

This result can be interpreted in several ways. ASW pointed out that if the path enclosed
(but did not closely approach) an integer number nqh of quasi-holes with charge e/q in an
otherwise incompressible state with filling fraction ν = 1/q, then

θ = θAB + nqhθ
⋆ (2)

where θAB = 2π[Φ/Φ⋆
0] where Φ is the total magnetic flux enclosed, and Φ⋆

0 = hc/e⋆ is an
effective flux quantum for a particle with charge e⋆ = e/q, and θ⋆ = 2π/q is the statistical
phase that governs the braiding statistics - and thus identifies the quasi-particles as Abelian
anyons. (Indeed, they have the same statistical phase invoked earlier by Halperin[13] in con-
structing heirarchical wave-functions for additional fractional quantum Hall states, starting
with ν = 2/5.) Alternatively, the same equation can be interpreted as reflecting an indica-
tion of particle-vortex duality, in which in the dual description charge becomes flux and flux
becomes charge [14].

Later, it was proposed that θ - both as a measure of the fractional charge and of the frac-
tional statistics - could be measured in a Fabry-Perot-like interferometer. [15] Importantly,
it was also recognized that the nature of the Berry phases involved is necessarily more subtle
(and still more interesting) for heirarchical states, [16] such as the ν = 2/5 state, and even
more so for states that support non-Abelian anyons, [17, 18] such as presumably the ν = 5/2
or ν = 7/2 states. However, achieving the requisite experimental control - especially control
of Coulomb charging energy - meant that while relatively rapid progress was made in ob-
taining interferometric measures of the fractional charge [19], the measurement of fractional
statistics is only just now being realized.

In the new experiment [20], an interferometer—a large (1µm2) multi-electron (∼ 1000)
quantum dot with two quantum-point-contact leads—similar to the device investigated in
Ref. [2], with the same proximal back gate grown into the heterostructure—was operated
with the bulk regions inside and outside the dot at filling factor ν = 2/5 as well as 1/3 as in
Ref. [2].

The point contacts were tuned to either fully or partially transmit edge modes from
regions outside of the dot through to the inside of the dot. In this way, a comparison of
three different regimes could be made in a single device: (i) the regime with ν = 1/3 in the
bulk and partial transmission of a single 1/3 edge (the same configuration as in Ref. [2]); (ii)
the regime with ν = 2/5 in the bulk where only the outermost of the two edge modes (closest
to the gates) is partially transmitted; and (iii) the regime with ν = 2/5 in the bulk and only
the innermost edge mode (farthest from the gates) is partially transmitted. In these last
two cases it is tempting to identify the outer of the two edge modes as the “1/3 edge mode”
and the inner as the “2/5 edge mode.” The authors are careful to compare interferometry
signals for a partially transmitted inner edge mode at ν = 2/5 with signals from a partially
transmitted single edge mode at ν = 1/3 before making this identification. This is the
natural association, but it could have been otherwise, that the two edges at ν = 2/5 mixed
and lost their identities.
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In fact, interference of the outer mode at ν = 2/5 and the single mode at ν = 1/3 do
show several differences that complicate a simple mapping. First, the gaps are smaller at
ν = 2/5, as the field is lower. Second, interference of the outer edge at ν = 2/5 has a gapless
inner edge inside the dot that can absorb quasiparticles. The lack of clear phase jumps—the
key signature of fractional statistics in Ref. [2]—for the case of outer-edge-mode interference
at ν = 2/5 is ascribed to these differences by the authors.

Figure 1: (a) Stylized micrograph from [20] showing a gate-defined quantum dot with point
contact leads controlling edge-mode transmission and an internal gate controlling the density
in the dot. The quantum dot is large, containing ∼ 1000 electrons, such that the charging
energy is small and localized quasipartices in the middle of the dot can be weakly coupled
to the edges. (b) Depleting the two quantum point contacts allows separate controlled
transmission of the inner (2/5) and outer (1/3) edge modes.

Then, moving to interferometry of the inner edge at ν = 2/5, the authors deduce an
effective charge e∗ ∼ 0.17, in reasonable agreement with the theoretically expected value
of 1/5, based on the period of Aharonov-Bohm like oscillations along diagonals in field-
gate voltage space, and more importantly, deduce a value of the statistical phase θa ∼ 0.43
consistent with the expected value of 2/5. Extracting the statistical phase involves measuring
both phase jumps and a bulk-edge coupling parameter, which necessarily adds complexity
and allows some room for interpretation.
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The experiment demonstrates not only the value of designing heterostructures, and not
just gate patterns, but also reveals the complexity of interferometry experiments, especially
when more than one edge mode is involved.

Besides Ref. [20], other recent investigations of fractional charge and statistics have also
shown impressive progress. An alternative approach based on a Mach-Zender interferometer
[5] avoids confinement by design, and so only sees Aharonov-Bohm interference. This study
of the interference pattern produced by the outer (1/3) edge at bulk filling factor ν = 2/5
measures a flux periodicity of 1Φ0 = h/e while simultaneously measuring an effective charge
e∗ = 1/3 based on shot noise. The authors point out that these two results taken together
reflect a fractional braiding phase of 2π/3, as expected for 1/3 fractional quasiparticles. A
related argument for the amplitude of the interference distinguishes electrons and 1/3 anyons
with reasonable consistency between theory and experiment.

Although results from Ref. [20] (as well a Ref. [5]) appear compelling, and indeed conform
to the simplest theoretical expectations to a remarkable extent, the case is certainly not yet
closed. As was recently stressed in Ref. [4] and many earlier papers referenced therein, there
are a variety of theoretically expected confounding factors, so that in some ways the fact
that the results look so good is itself something of a mystery. There is a general expectation
that quantum Hall edges are considerably more complicated than the minimal edge-modes
treated in the simplest theories. Still more importantly, localized quasi-particles near the
edges of the sample can be expected to change their state as a function of changing field
or changing gate voltage, which (if they are close enough to the edge to tunnel from inside
to outside) can lead to additional complicated changes in the interference patterns. (So, for
instance, related earlier work[6] on deducing the effective charge from interferometry in the
vicinity of ν = 5/2 – where there is an even larger number of expected edge modes – is
even more complex, leaving correspondingly more room for alternative interpretations of the
data.)

Fortunately, there is still much to understand, and plenty more regimes and device ge-
ometries to explore. But, as a community, we are beginning to get a handle on the important
problem of anyon braiding and statistics.
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