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Two recent articles [1, 2] report observing signatures of the Fractional Quantum Anoma-
lous Hall (FQAH) effect in twisted bilayer MoTe2. These are the first experimental evidence
of fractional quantum Hall (FQH) states in the absence of an applied magnetic field.

Let’s work backwards through the acronym FQAH to unpack what precisely this claim
means, notably as there are multiple terminologies. The Hall effect refers to the Hall con-
ductivity, σxy, which quantifies the current jx induced by a perpendicular electric field Ey

– or more precisely, the antisymmetric part of the conductivity tensor. Classically, the Hall
effect arises due to the Lorentz force on the carriers from a magnetic field B piercing the
sample [3]. The Hall effect is thus Anomalous if σxy is non-zero in the absence of an applied
B field [4]; this requires some other source of time reversal breaking. The Hall effect is
Quantum if the Hall conductivity is quantized in fundamental units

σxy = t
e2

h
(1)

while the normal dissipative conductivity vanishes. Here, t is either an integer or small-
denominator Fraction (in the FQH) [5]. Thus, a FQAH state should exhibit a fractionally
quantized Hall conductivity in the absence of magnetic field.

The FQH states on lattice systems are also referred to, essentially interchangeably, as
Fractional Chern Insulators (FCI) [6]. The term Chern Insulator derives from the mathe-
matical connection between the quantum Hall conductivity in a gapped insulator and the
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Chern number of the ground state on a torus [7]. This is a somewhat more modern per-
spective, which de-emphasizes the fractional Hall conductance relative to the other aspects
of topological order which are believed to come along with it, such as quasiparticles with
fractional charge and exchange statistics. It also focuses attention on the lattice rather than
the magnetic field as the microscopic source of time-reversal breaking [8].
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Figure 1: Incompressible states appear as
peaks in the incompressibility, as measured by
optical proxy in (a,b) from Ref. [1] and by
capacitive sensor (c) from Ref. [2]. At zero
field, on the hole-doped side, incompressible
states appear at commensurate lattice fillings
s = −1,−2/3 in (a,c) and weakly at s = −3/5
in (a). Note the electron density axis is re-
versed for panel (c) as Ref. [2] takes holes to
have positive filling. The quantized Hall con-
ductance is indicated by the linear dispersion
with applied magnetic field, corresponding to
t = −1,−2/3,−3/5 respectively. (b) This evo-
lution contrasts with the incompressible states
on the electron-doped side, whose density does
not depend on B. (d) Sketch of Moiré super
lattice.

The Evidence— Given the discussion
above, it might be surprising that neither
group has measured the Hall conductivity
of their twisted MoTe2 samples, or anything
about fractional quasiparticles. Rather, the
essential physical principle underlying the
interpretation of Refs. [1, 2] is that of in-
compressibility. A system of electrons is in-
compressible if there is a finite energy gap
to add or remove an electron to the bulk –
which, at least in the absence of disorder,
we expect of insulating states such as the
QH states. Incompressible states appear as
peaks in the incompressibility as a function
of the density of electrons, ρe. In Ref. [1],
the incompressibility is measured indirectly
from the shifts in the photoluminescent spec-
trum of a probe exciton, while in Ref. [2], a
capacitively coupled sensing layer is used as
a direct probe.

Typically, in zero magnetic field, incom-
pressible states appear at electron density
commensurate with the background lattice.
For example, band insulators have integer
filling s with respect to the unit cell and sim-
ple charge density waves have fractional fill-
ing such as 1/4. In the small-angle twisted
bilayer MoTe2 studied in both experiments,
the relevant lattice is the Moiré superlat-
tice, visible in Fig. 1d, a honeycomb lattice
with large side length aL ≈ 5 − 6 nm and
correspondingly low density ρL ≈ 3 − 4 ×
1012 cm−2. The proposed QAH states appear as incompressible peaks on the hole doped
side at fillings s = −1,−2/3 in both Refs. [1, 2] and additionally (weakly) at s = −3/5 in
Ref. [1], see Fig. 1a,c.

To identify the states associated with these peaks as quantum Hall states, the authors
consider how they respond to applied magnetic fields. For incompressible states, the Streda
formula [9] relates the Hall conductance to the change in the electron density ρe as a function
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of applied field B,

σxy = e
∂ρe
∂B

(2)

Or, integrating this relationship from B = 0 and rearranging, we find that the electron
density is a rational linear combination of the density of lattice unit cells ρL and the density
of magnetic flux quanta ρB = B/(h/e),

ρe = sρL + tρB (3)

With this relation in hand, we return to Fig. 1 and look at the evolution of the incom-
pressible peaks in a magnetic field. These are indeed linear in B (from zero to quite
large fields of 8 T in Ref. [2]) and can be labeled by their slope and intercept (s, t) =
(−1,−1), (−2/3,−2/3), (−3/5,−3/5). These can be contrasted with simpler incompressible
states which have no evolution with B (t = 0) on the electron doped side – presumably
various charge density waves.

Where does the time-reversal breaking at B = 0 come from? Both groups use optical
techniques to check that the system exhibits out of plane ferromagnetism, which sponta-
neously breaks the time reversal symmetry required to exhibit a Hall response. Indeed, the
coercive field of the ferromagnet also reflects the formation of the incompressible state and
is used as another diagnostic of the FQAH states. On the other hand, one should not think
of the FQAH state as arising simply as if there were a large local field induced by the ferro-
magnetism. In a thin film, the B field produced by a uniform magnetization vanishes in the
bulk. Rather, from a mean-field perspective, the magnetic ordering presumably produces
Berry curvature in the effective electronic bands and residual interactions stabilize the in-
compressible FQAH states at partial filling. It would be very interesting if more detailed
transport experiments could observe the Berry curvature directly.

The Streda formula Eq. (3) can be proven quite generally for non-interacting systems,
where s, t must take integer values. It is also intuitively clear in the traditional Landau level
analysis of FQH in semiconductors in large B fields: the s electrons bound to the lattice
can be thought of as the atomic core electrons while the t electrons are the carriers which
populate the Landau levels – whose degeneracy is precisely given by the number of magnetic
flux quanta.

The FQAH states with s = t = −2/3 in the zero field limit are quite a bit stranger.
Here, the relevant electrons form an incompressible state with a density commensurate with
the lattice unit cell. The electrons in this liquid decouple from that lattice unit cell as the
magnetic field turns on – at 8T, the magnetic length ∼ 8 nm is nearly as short as the lattice
length aL ∼ 5 nm and yet the state evolves smoothly!

The discovery of the fractional quantum Hall effect in semiconductor heterostructures
subject to large magnetic fields about four decades ago led to significant revision of how we
classify and understand quantum many-body phases. The FQH states remain the prototyp-
ical topological phase, especially on the experimental front where a variety of FQH states
have been studied in both semiconductor heterostructures and 2D layered materials. The
measurements reported here reveal a new platform for studying such physics without the
complications of large magnetic fields. There is a long and exciting road ahead to measure-
ments of other aspects of topological order.
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